A Learning-Based Physical Model of Charge Transport in Room-Temperature Semiconductor Detectors

探测器 物理 电子 像素 表征(材料科学) 卷积神经网络 粒子探测器 体素 人工神经网络 半导体 计算机科学 光学 计算物理学 光电子学 人工智能 核物理学
作者
Srutarshi Banerjee,Miesher Rodrigues,Alexander Hans Vija,Aggelos K. Katsaggelos
出处
期刊:IEEE Transactions on Nuclear Science [Institute of Electrical and Electronics Engineers]
卷期号:69 (1): 2-16 被引量:9
标识
DOI:10.1109/tns.2021.3130486
摘要

Room-temperature semiconductor radiation detectors (RTSDs) such as CdTe are becoming popular in computed tomography (CT) imaging. These detectors are often pixelated, requiring cumbersome postinteraction 3-D event reconstruction, which can benefit from detailed material characterization at the micron level. Transport properties and material defects with respect to electrons and holes are to be characterized, which is a labor-intensive process. Current state-of-the-art characterization is done either as a whole or at most pixel-by-pixel over the detector material. In this article, we propose a novel learning-based physical model to infer material properties at the microscopic level for RTSD. Our approach uses a novel physics-inspired learning model based on physical transport of charges with trapping centers for electrons and holes in the detector. The proposed model learns these material properties from known or measured input charges to the detector along with known or measured output signals and distributed charges in the bulk of the RTSD. The actual physical detector is divided into voxels in space and takes into account different material properties (such as drift, trapping, detrapping, and recombination) in each voxel as learnable model parameters. The model is based on a physics-inspired recurrent neural network model instead of traditional convolutional or fully connected networks. The advantage of our approach is the one-to-one relationship between the actual physical parameters of the voxels and learnable weights in the model, far fewer trainable parameters compared to traditional neural network approaches and less training time. The performance of our model has been evaluated on cadmium zinc telluride (CdZnTe), with voxels of three sizes, 25, 50, and $100~ \mu{\mathrm {m}}$ , for single charge input as well as multiple charge inputs at different voxel positions. Our learning-based model provides material properties with higher spatial resolution and performs well in all scenarios and matches the actual physical parameters better than state-of-the-art classical approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助小郑小郑采纳,获得10
刚刚
爱炸鸡也爱烧烤完成签到 ,获得积分10
2秒前
3秒前
3秒前
甜甜的棉花糖完成签到,获得积分10
3秒前
3秒前
烤地瓜的z发布了新的文献求助10
5秒前
FashionBoy应助Shandongdaxiu采纳,获得20
5秒前
bkagyin应助热吻街头采纳,获得10
6秒前
6秒前
英俊的铭应助小密母采纳,获得10
7秒前
www发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
dany发布了新的文献求助10
10秒前
11秒前
脑洞疼应助hh采纳,获得10
11秒前
炙热萝完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
鲤鱼卷卷完成签到,获得积分10
14秒前
14秒前
RYYYYYYY233完成签到 ,获得积分10
14秒前
敬敬完成签到,获得积分10
15秒前
完美世界应助www采纳,获得10
15秒前
uilyang完成签到,获得积分10
16秒前
丛玉林发布了新的文献求助10
16秒前
16秒前
科研通AI5应助俞璐采纳,获得10
16秒前
17秒前
17秒前
18秒前
情怀应助Doll采纳,获得10
18秒前
18秒前
ll发布了新的文献求助10
19秒前
19秒前
wzq发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284864
求助须知:如何正确求助?哪些是违规求助? 3812294
关于积分的说明 11941528
捐赠科研通 3458800
什么是DOI,文献DOI怎么找? 1896938
邀请新用户注册赠送积分活动 945544
科研通“疑难数据库(出版商)”最低求助积分说明 849342