Frontiers in Terahertz Imaging Applications beyond Absorption Cross-Section and Diffraction Limits

太赫兹辐射 吸收(声学) 材料科学 光学 灵敏度(控制系统) 光电子学 医学影像学 计算机科学 图像分辨率 压缩传感 纳米技术 物理 人工智能 电子工程 工程类
作者
Geon Lee,Jinwoo Lee,Q‐Han Park,Minah Seo
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:9 (5): 1500-1512 被引量:20
标识
DOI:10.1021/acsphotonics.1c02006
摘要

Label-free imaging technology is highly desirable for various bioengineering, medicine, and chemistry applications. Most existing optical imaging techniques require labeling of the biospecimens and have limitations that may affect the intrinsic properties of the target species. The electromagnetic waves in the terahertz (THz) spectral range can be an excellent alternative to visible light, which provides plentiful vibrational signatures of many molecules with very low photon energy (1 THz is equivalent to 4 meV), completely free from damage to the biomaterials. For this reason, THz waves possessing a broadband spectrum have emerged as a critical technology for fundamental research in bio/chemical detection and medical imaging, as well as in solid-state physics, chemistry, material science, and highly anticipated 6G next-generation telecommunications. The limited performance of THz waves as a sensing or imaging tool has been a considerable drawback resulting from low sensitivity or diffraction-limited low spatial resolution. Nevertheless, many successes in obtaining increased sensitivity with additional nanostructures and improving spatial resolution with geometric beam shaping opened up a way for highly efficient real-time THz imaging. From this Perspective, recent trends in innovative THz sensing and imaging research deserve an introduction regarding the level of reliability and sensitivity that can evolve into an actual medical device and other applications. It can also be expected to enable progress in analysis algorithms (compressive phase retrieval, reconstruction, or machine/deep learning), enabling better data sampling, denoising, deblurring, and efficient computing cost, thus finally providing a leap forward in the THz imaging area beyond the absorption cross-section and diffraction limits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang发布了新的文献求助10
1秒前
巫剑完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
超级的碧完成签到,获得积分10
2秒前
2秒前
小蘑菇应助黄鱼采纳,获得10
3秒前
zq123完成签到,获得积分10
5秒前
8R60d8应助Jhinnnn采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
星辰大海应助美年达采纳,获得10
6秒前
yangph发布了新的文献求助10
7秒前
7秒前
lvying完成签到,获得积分10
8秒前
不样钓鱼完成签到,获得积分10
9秒前
领导范儿应助aaa采纳,获得10
9秒前
ChouNic完成签到 ,获得积分10
10秒前
wsatm发布了新的文献求助10
10秒前
ZC完成签到,获得积分10
10秒前
皮蛋完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
jiayou完成签到,获得积分10
12秒前
12秒前
kelly发布了新的文献求助10
13秒前
sunzeyi完成签到,获得积分10
14秒前
123发布了新的文献求助10
14秒前
jiayou发布了新的文献求助10
15秒前
15秒前
零零完成签到,获得积分10
15秒前
Akim应助专一的幻儿采纳,获得10
16秒前
烟花应助上官卿采纳,获得10
16秒前
着急的焦发布了新的文献求助10
16秒前
11111发布了新的文献求助20
17秒前
18秒前
夜泊发布了新的文献求助10
18秒前
黄鱼发布了新的文献求助10
19秒前
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4234693
求助须知:如何正确求助?哪些是违规求助? 3768120
关于积分的说明 11838743
捐赠科研通 3426095
什么是DOI,文献DOI怎么找? 1880218
邀请新用户注册赠送积分活动 932862
科研通“疑难数据库(出版商)”最低求助积分说明 839927