Predicting Compressive Strength of Concrete Containing Industrial Waste Materials: Novel and Hybrid Machine Learning Model

抗压强度 材料科学 计算机科学 复合材料
作者
Mohammed Majeed Hameed,Mustafa Abbas Abed,Nadhir Al‐Ansari,Mohamed Khalid AlOmar
出处
期刊:Advances in Civil Engineering [Hindawi Limited]
卷期号:2022 (1) 被引量:36
标识
DOI:10.1155/2022/5586737
摘要

In the construction and cement manufacturing sectors, the development of artificial intelligence models has received remarkable progress and attention. This paper investigates the capacity of hybrid models conducted for predicting the compressive strength (CS) of concrete where the cement was partially replaced with ground granulated blast‐furnace slag (FS) and fly ash (FA) materials. Accurate estimation of CS can reduce the cost and laboratory tests. Since the traditional method of calculation CS is complicated and requires lots of effort, this article presents new predictive models called SVR − PSO and SVR − GA, that are a hybridization of support vector regression (SVR) with improved particle swarm algorithm (PSO) and genetic algorithm (GA). Furthermore, the hybrid models (i.e., SVR − PSO and SVR − GA) were used for the first time to predict CS of concrete where the cement component is partially replaced. The improved PSO and GA are given essential roles in tuning the hyperparameters of the SVR model, which have a significant influence on model accuracy. The suggested models are evaluated against extreme learning machine (ELM) via quantitative and visual evaluations. The models are evaluated using eight statistical parameters, and then the SVR‐PSO has provided the highest accuracy than comparative models. For instance, the SVR − PSO during the testing phase provided fewer root mean square error (RMSE) with 1.386 MPa, a higher Nash–Sutcliffe model efficiency coefficient (NE) of 0.972, and lower uncertainty at 95% (U 95 ) with 28.776%. On the other hand, the SVR − GA and ELM models provide lower accuracy with RMSE of 2.826 MPa and 2.180, NE with 0.883 and 0.930, and U 95 with 518.686 183.182, respectively. Sensitivity analysis is carried out to select the influential parameters that significantly affect CS. Overall, the proposed model showed a good prediction of CS of concrete where cement is partially replaced and outperformed 14 models developed in the previous studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Owen应助花恋采纳,获得10
1秒前
淡然语芙完成签到,获得积分10
3秒前
4秒前
YDX发布了新的文献求助10
4秒前
寒一完成签到,获得积分20
5秒前
5秒前
6秒前
天天快乐应助dfggg采纳,获得10
8秒前
8秒前
9秒前
殷一丹完成签到 ,获得积分10
9秒前
cola完成签到 ,获得积分10
10秒前
玉锅巴发布了新的文献求助10
10秒前
10秒前
大胆的初瑶完成签到,获得积分10
13秒前
Avery完成签到,获得积分10
13秒前
针真滴完成签到 ,获得积分10
14秒前
完美世界应助正直芫采纳,获得10
14秒前
微光应助ybbb采纳,获得10
15秒前
嘿嘿发布了新的文献求助30
15秒前
东方元语应助无极微光采纳,获得20
16秒前
17秒前
哈哈哈曲奇完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
zhuzhuzhu发布了新的文献求助10
24秒前
Mic应助感动的时光采纳,获得30
24秒前
26秒前
yy发布了新的文献求助10
29秒前
29秒前
30秒前
风清扬应助科研通管家采纳,获得30
30秒前
酷波er应助科研通管家采纳,获得10
30秒前
华仔应助科研通管家采纳,获得10
30秒前
雨姐科研应助科研通管家采纳,获得10
30秒前
Lucas应助科研通管家采纳,获得10
30秒前
研友_VZG7GZ应助科研通管家采纳,获得10
30秒前
30秒前
浮游应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5541416
求助须知:如何正确求助?哪些是违规求助? 4627903
关于积分的说明 14605540
捐赠科研通 4568935
什么是DOI,文献DOI怎么找? 2504849
邀请新用户注册赠送积分活动 1482334
关于科研通互助平台的介绍 1453871