清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Translating Human Mobility Forecasting through Natural Language Generation

计算机科学 瓶颈 管道(软件) 人工智能 自然语言生成 自然语言 机器学习 机动性模型 数据挖掘 分布式计算 嵌入式系统 程序设计语言
作者
Hao Xue,Flora D. Salim,Yongli Ren,Charles L. A. Clarke
标识
DOI:10.1145/3488560.3498387
摘要

Existing human mobility forecasting models follow the standard design of the time-series prediction model which takes a series of numerical values as input to generate a numerical value as a prediction. Although treating this as a regression problem seems straightforward, incorporating various contextual information such as the semantic category information of each Place-of-Interest (POI) is a necessary step, and often the bottleneck, in designing an effective mobility prediction model. As opposed to the typical approach, we treat forecasting as a translation problem and propose a novel forecasting through a language generation pipeline. The paper aims to address the human mobility forecasting problem as a language translation task in a sequence-to-sequence manner. A mobility-to-language template is first introduced to describe the numerical mobility data as natural language sentences. The core intuition of the human mobility forecasting translation task is to convert the input mobility description sentences into a future mobility description from which the prediction target can be obtained. Under this pipeline, a two-branch network, SHIFT (Translating Human Mobility Forecasting), is designed. Specifically, it consists of one main branch for language generation and one auxiliary branch to directly learn mobility patterns. During the training, we develop a momentum mode for better connecting and training the two branches. Extensive experiments on three real-world datasets demonstrate that the proposed SHIFT is effective and presents a new revolutionary approach to forecasting human mobility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gexzygg应助科研通管家采纳,获得10
5秒前
MMMMM应助科研通管家采纳,获得30
5秒前
桦奕兮完成签到 ,获得积分10
15秒前
17秒前
19秒前
小二郎应助xue采纳,获得10
51秒前
woxinyouyou完成签到,获得积分0
53秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
苏信怜完成签到,获得积分10
2分钟前
刘刘完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
nini完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
情怀应助研友_拓跋戾采纳,获得10
3分钟前
4分钟前
紫熊完成签到,获得积分10
4分钟前
云雨完成签到 ,获得积分10
4分钟前
lixuebin完成签到 ,获得积分10
4分钟前
4分钟前
Micheallee完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
微卫星不稳定完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
Muran完成签到,获得积分0
5分钟前
wuju完成签到,获得积分10
6分钟前
MMMMM应助科研通管家采纳,获得30
6分钟前
MMMMM应助科研通管家采纳,获得20
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
柯伊达完成签到 ,获得积分10
6分钟前
超级热女士完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270418
求助须知:如何正确求助?哪些是违规求助? 3800870
关于积分的说明 11910965
捐赠科研通 3447741
什么是DOI,文献DOI怎么找? 1891032
邀请新用户注册赠送积分活动 941779
科研通“疑难数据库(出版商)”最低求助积分说明 845903