Improved U-Net Remote Sensing Classification Algorithm Based on Multi-Feature Fusion Perception

计算机科学 人工智能 模式识别(心理学) 支持向量机 多光谱图像 特征(语言学) 网(多面体) 分割 保险丝(电气) 特征选择 遥感 数据挖掘 地理 数学 哲学 语言学 几何学 电气工程 工程类
作者
Chuan Yan,Xiangsuo Fan,Jinlong Fan,Nayi Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (5): 1118-1118 被引量:36
标识
DOI:10.3390/rs14051118
摘要

The selection and representation of remote sensing image classification features play crucial roles in image classification accuracy. To effectively improve the classification accuracy of features, an improved U-Net network framework based on multi-feature fusion perception is proposed in this paper. This framework adds the channel attention module (CAM-UNet) to the original U-Net framework and cascades the shallow features with the deep semantic features, replaces the classification layer in the original U-Net network with a support vector machine, and finally uses the majority voting game theory algorithm to fuse the multifeature classification results and obtain the final classification results. This study used the forest distribution in Xingbin District, Laibin City, Guangxi Zhuang Autonomous Region as the research object, which is based on Landsat 8 multispectral remote sensing images, and, by combining spectral features, spatial features, and advanced semantic features, overcame the influence of the reduction in spatial resolution that occurs with the deepening of the network on the classification results. The experimental results showed that the improved algorithm can improve classification accuracy. Before the improvement, the overall segmentation accuracy and segmentation accuracy of the forestland increased from 90.50% to 92.82% and from 95.66% to 97.16%, respectively. The forest cover results obtained by the algorithm proposed in this paper can be used as input data for regional ecological models, which is conducive to the development of accurate and real-time vegetation growth change models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟暮发布了新的文献求助10
1秒前
赘婿应助ssss采纳,获得10
1秒前
1秒前
2秒前
3秒前
4秒前
4秒前
吴所畏惧完成签到,获得积分10
4秒前
4秒前
GodMG完成签到,获得积分10
5秒前
赘婿应助猴儿采纳,获得10
5秒前
怡然颦完成签到,获得积分10
6秒前
hanshuo4400发布了新的文献求助10
6秒前
6秒前
666发布了新的文献求助10
9秒前
怡然颦发布了新的文献求助10
9秒前
XieQinxie发布了新的文献求助10
11秒前
11秒前
passionate完成签到,获得积分10
11秒前
可爱霖霖发布了新的文献求助10
11秒前
高兴璎发布了新的文献求助10
11秒前
hanshuo4400完成签到,获得积分10
12秒前
12秒前
独特安阳完成签到,获得积分10
15秒前
安静爆米花完成签到 ,获得积分20
16秒前
林夏发布了新的文献求助10
17秒前
FashionBoy应助淡蓝色采纳,获得10
19秒前
liyan完成签到 ,获得积分10
20秒前
眯眯眼的乐曲完成签到,获得积分10
22秒前
23秒前
爆米花应助微笑天磊采纳,获得10
25秒前
28秒前
28秒前
隐形曼青应助柔弱熊猫采纳,获得10
28秒前
31秒前
琉璃色孔雀完成签到,获得积分10
32秒前
32秒前
一澜发布了新的文献求助10
33秒前
迟暮发布了新的文献求助10
33秒前
唐艺昕发布了新的文献求助10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800254
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325792
捐赠科研通 3061969
什么是DOI,文献DOI怎么找? 1680716
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557