正规化(语言学)
软传感器
计算机科学
人工智能
深度学习
机器学习
作者
Chen Ou,Hongqiu Zhu,Yuri A W Shardt,Lingjian Ye,Xiaofeng Yuan,Yalin Wang,Chunhua Yang
标识
DOI:10.1109/tnnls.2022.3144162
摘要
The growth of data collection in industrial processes has led to a renewed emphasis on the development of data-driven soft sensors. A key step in building an accurate, reliable soft sensor is feature representation. Deep networks have shown great ability to learn hierarchical data features using unsupervised pretraining and supervised fine-tuning. For typical deep networks like stacked auto-encoder (SAE), the pretraining stage is unsupervised, in which some important information related to quality variables may be discarded. In this article, a new quality-driven regularization (QR) is proposed for deep networks to learn quality-related features from industrial process data. Specifically, a QR-based SAE (QR-SAE) is developed, which changes the loss function to control the weights of the different input variables. By choosing an appropriate inductive bias for the weight matrix, the model provides quality-relevant information for predictive modeling. Finally, the proposed QR-SAE is used to predict the quality of a real industrial hydrocracking process. Comparative experiments show that QR-SAE can extract quality-related features and achieve accurate prediction performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI