丢番图方程
数学
丢番图集
对数
卢卡斯数
丢番图近似
指数函数
组合数学
序列(生物学)
卢卡斯数列
离散数学
数学分析
斐波纳契数
生物
差分多项式
斐波那契多项式
遗传学
正交多项式
作者
Pagdame Tiebekabe,Ismaïla Diouf
出处
期刊:Malaya journal of matematik
[MKD Publishing House]
日期:2021-01-01
卷期号:9 (04): 228-238
被引量:3
摘要
Let $(L_n)_{n\geq 0}$ be the Lucas sequence given by $L_0 = 2, L_1 = 1$ and $L_{n+2} = L_{n+1}+L_n$ for $n \geq 0$. In this paper, we are interested in finding all powers of three which are sums of two Lucas numbers, i.e., we study the exponential Diophantine equation $L_n + L_m = 3^{a}$ in nonnegative integers $n, m,$ and $a$. The proof of our main theorem uses lower bounds for linear forms in logarithms, properties of continued fractions, and a version of the Baker-Davenport reduction method in Diophantine approximation.
科研通智能强力驱动
Strongly Powered by AbleSci AI