Identifying optimal candidates for tumor resection among borderline and locally advanced pancreatic cancer: A population-based predictive model

医学 胰腺癌 切除术 内科学 肿瘤科 癌症
作者
Zhenhua Lu,Weiwei Shao,Xiaolei Shi,Tianhua Tan,Cheng Xing,Zhe Li,Jingyong Xu,Hongyuan Cui,Jinghai Song
出处
期刊:Pancreatology [Elsevier]
标识
DOI:10.1016/j.pan.2022.01.004
摘要

Whether patients with borderline resectable and locally advanced pancreatic cancer (BR/LAPC) benefit from resection of the primary cancer is controversial. We developed a nomogram to screen who would benefit from surgery for the primary tumor. We identified patients from the Surveillance, Epidemiology, and End Results (SEER) database and then divided them into surgical and non-surgical groups. A 1:1 propensity score matching (PSM) was used to mitigate the bias. We hypothesized that patients who underwent surgery would benefit from surgery by having a longer median overall survival (OS) than patients who did not undergo surgery. Univariate and multivariate logistic regression analyses were used to determine the variables affecting surgical outcomes, and a nomogram was created based on the multivariate logistic results. Finally, we verified the discrimination and calibration of the nomogram with receiver operator characteristic (ROC) curve and calibration plots. A total of 518 pairs of surgical and non-surgical pancreatic cancer patients were matched after PSM. Survival curves showed longer OS and CSS in the surgical group than in the non-surgical group, median survival times were 14 months versus 8 months and 16 months versus 9 months, respectively. In the surgical group, 340 (65.63%) patients have a longer survival time than 8 months (beneficial group). Multifactorial logit regression results showed that including age, tumor size, degree of differentiation, and chemotherapy were significant influences on the benefit of surgery for primary tumors and were used as predictors to construct a nomogram. The area under the ROC curve (AUC) reached 0.747 and 0.706 in the training and validation sets. We developed a practical predictive model to support clinical decision-making that can be used to help clinicians determine if there is a benefit to surgical resection of the primary tumor in patients with BR/LAPC.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如初完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
3秒前
张子怡完成签到 ,获得积分10
4秒前
完美世界应助HJJHJH采纳,获得10
4秒前
6秒前
7秒前
大个应助风清扬采纳,获得10
9秒前
斯文败类应助不能熬夜采纳,获得10
9秒前
七海Nana7mi发布了新的文献求助10
9秒前
haoliangshi发布了新的文献求助10
12秒前
12秒前
12秒前
科研通AI6.1应助GRX1110采纳,获得10
12秒前
Neymar发布了新的文献求助10
13秒前
计时器响了完成签到,获得积分10
13秒前
14秒前
CipherSage应助Amanda采纳,获得10
17秒前
18秒前
爱笑的冷风完成签到 ,获得积分10
18秒前
大模型应助Uncanny采纳,获得10
19秒前
Joy发布了新的文献求助30
20秒前
顺利若山完成签到,获得积分10
20秒前
300发布了新的文献求助10
20秒前
福娃哇完成签到 ,获得积分10
20秒前
可爱的函函应助TJQ采纳,获得10
21秒前
吃饱饱完成签到 ,获得积分10
24秒前
光亮的万天完成签到 ,获得积分10
24秒前
李萍萍发布了新的文献求助10
24秒前
所所应助静默采纳,获得10
24秒前
25秒前
lizishu应助科研通管家采纳,获得20
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874980
求助须知:如何正确求助?哪些是违规求助? 6512400
关于积分的说明 15675637
捐赠科研通 4992660
什么是DOI,文献DOI怎么找? 2691250
邀请新用户注册赠送积分活动 1633584
关于科研通互助平台的介绍 1591214