Camera eats first: exploring food aesthetics portrayed on social media using deep learning

群众 社会化媒体 独创性 集合(抽象数据类型) 质量(理念) 摄影 营销 比例(比率) 价值(数学) 广告 心理学 计算机科学 社会学 定性研究 业务 地理 视觉艺术 艺术 社会科学 政治学 万维网 哲学 程序设计语言 法学 机器学习 认识论 地图学
作者
Alessandro Gambetti,Qiwei Han
出处
期刊:International Journal of Contemporary Hospitality Management [Emerald Publishing Limited]
卷期号:34 (9): 3300-3331 被引量:27
标识
DOI:10.1108/ijchm-09-2021-1206
摘要

Purpose The purpose of this paper is to explore and examine discrepancies of food aesthetics portrayed on social media across different types of restaurants using a large-scale data set of food images. Design/methodology/approach A neural food aesthetic assessment model using computer vision and deep learning techniques is proposed, applied and evaluated on the food images data set. In addition, a set of photographic attributes drawn from food services and cognitive science research, including color, composition and figure–ground relationship attributes is implemented and compared with aesthetic scores for each food image. Findings This study finds that restaurants with different rating levels, cuisine types and chain status have different aesthetic scores. Moreover, the authors study the difference in the aesthetic scores between two groups of image posters: customers and restaurant owners, showing that the latter group tends to post more aesthetically appealing food images about the restaurant on social media than the former. Practical implications Restaurant owners may consider performing more proactive social media marketing strategies by posting high-quality food images. Likewise, social media platforms should incentivize their users to share high-quality food images. Originality/value The main contribution of this paper is to provide a novel methodological framework to assess the aesthetics of food images. Instead of relying on a multitude of standard attributes stemming from food photography, this method yields a unique one-take-all score, which is more straightforward to understand and more accessible to correlate with other target variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
非也非也6完成签到,获得积分10
刚刚
Ling完成签到,获得积分10
1秒前
Lina完成签到,获得积分10
1秒前
十九集发布了新的文献求助10
1秒前
NexusExplorer应助zxer采纳,获得10
2秒前
果子完成签到,获得积分20
3秒前
3秒前
友好凡霜发布了新的文献求助10
4秒前
4秒前
寒冷乐驹发布了新的文献求助10
5秒前
所所应助TYolo采纳,获得10
6秒前
房雍发布了新的文献求助30
9秒前
CC完成签到,获得积分10
9秒前
lululu0212完成签到,获得积分10
10秒前
胡霖完成签到,获得积分10
11秒前
传奇3应助平淡茈采纳,获得10
11秒前
13秒前
CipherSage应助qianyuan采纳,获得30
15秒前
fourfor完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
阡陌完成签到,获得积分10
18秒前
baibai完成签到,获得积分10
19秒前
阳光飞槐发布了新的文献求助10
20秒前
44发布了新的文献求助30
20秒前
ED应助zyshao采纳,获得10
21秒前
科研通AI5应助Olivia采纳,获得10
22秒前
房雍完成签到,获得积分10
23秒前
27秒前
28秒前
29秒前
30秒前
受伤勒完成签到,获得积分20
30秒前
心心完成签到,获得积分10
32秒前
耗尽完成签到,获得积分10
32秒前
情怀应助阳光飞槐采纳,获得10
32秒前
徐佳达完成签到,获得积分10
33秒前
S1008发布了新的文献求助10
33秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805267
求助须知:如何正确求助?哪些是违规求助? 3350231
关于积分的说明 10348060
捐赠科研通 3066150
什么是DOI,文献DOI怎么找? 1683567
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214