A radiomics nomogram for predicting the meningioma grade based on enhanced T1WI images

列线图 无线电技术 脑膜瘤 接收机工作特性 曲线下面积 医学 核医学 放射科 内科学
作者
Chongfeng Duan,Xiaoming Zhou,Jiachen Wang,Nan Li,Fang Liu,Song Gao,Xuejun Liu,Wenjian Xu
出处
期刊:British Journal of Radiology [Wiley]
卷期号:95 (1137) 被引量:9
标识
DOI:10.1259/bjr.20220141
摘要

The objective of this study was to develop a radiomics nomogram for predicting the meningioma grade based on enhanced T1 weighted imaging (T1WI) images.188 patients with meningioma were analyzed retrospectively. There were 94 high-grade meningioma to form high-grade group and 94 low-grade meningioma were selected randomly to form low-grade group. Clinical data and MRI features were analyzed and compared. The clinical model was built by using the significant variables. The least absolute shrinkage and selection operator regression was used to select the most valuable radiomics feature. The radiomics signature was built and the Rad-score was calculated. The radiomics nomogram was developed by the significant variables of the clinical factors and Rad-score. The calibration curve and the Hosmer-Lemeshow test were used to evaluate the radiomics nomogram. Different models were compared by Delong test and decision curve analysis curve.The sex, size and surrounding invasion were used to build clinical model. The area under the receiver operator characteristic curve (AUC) of clinical model was 0.870 (95% CI: 0.782-0.959). Nine features were used to construct the radiomics signature. The AUC of the radiomics signature was 0.885 (95% CI: 0.802-0.968). The AUC of radiomics nomogram was 0.952 (95% CI: 0.904-1). The AUC of radiomics nomogram was higher than that of clinical model and radiomics signature with a significant difference (p<0.05). The decision curve analysis curve showed that the radiomics nomogram had a larger net benefit than the clinical model and radiomics signature.The radiomics nomogram based on enhanced T1 weighted imaging images for predicting the meningioma grade showed high predictive value and might contribute to the diagnosis and treatment of meningioma.1. We first constructed a radiomic nomogram to predict the meningioma grade.2. We compared the results of the clinical model, radiomics signature and radiomics nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵萝完成签到 ,获得积分10
3秒前
6秒前
Jaylou完成签到,获得积分10
7秒前
英俊的铭应助热情路人采纳,获得10
13秒前
机灵萝关注了科研通微信公众号
13秒前
英姑应助Aurora采纳,获得10
13秒前
阿良完成签到 ,获得积分10
15秒前
wad1314完成签到,获得积分10
15秒前
PMX发布了新的文献求助10
15秒前
迷路的手机完成签到,获得积分10
16秒前
Vesper完成签到 ,获得积分10
18秒前
淡定水杯完成签到,获得积分10
19秒前
och3完成签到,获得积分10
19秒前
星辰大海应助Rongli采纳,获得10
21秒前
where完成签到,获得积分10
23秒前
24秒前
清图完成签到,获得积分10
27秒前
28秒前
dwalll关注了科研通微信公众号
31秒前
PMX完成签到,获得积分20
31秒前
32秒前
33秒前
37秒前
s2183622完成签到,获得积分10
37秒前
39秒前
39秒前
默默琳完成签到,获得积分10
40秒前
Wian发布了新的文献求助10
41秒前
尔信完成签到 ,获得积分10
41秒前
icel完成签到,获得积分10
41秒前
Akim应助科研通管家采纳,获得10
42秒前
科研助手6应助科研通管家采纳,获得10
42秒前
orixero应助科研通管家采纳,获得10
42秒前
科研助手6应助科研通管家采纳,获得10
42秒前
NexusExplorer应助科研通管家采纳,获得10
42秒前
42秒前
英俊的铭应助科研通管家采纳,获得10
42秒前
李健应助PMX采纳,获得10
42秒前
动漫大师发布了新的文献求助10
44秒前
黄可以完成签到,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215380
捐赠科研通 3038867
什么是DOI,文献DOI怎么找? 1667677
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339