An integrated framework for multi-objective optimization of building performance: Carbon emissions, thermal comfort, and global cost

分类 多目标优化 数学优化 计算机科学 超参数 遗传算法 灵敏度(控制系统) 集合(抽象数据类型) 采样(信号处理) 过程(计算) 最优化问题 方案(数学) 人工神经网络 帕累托原理 全局优化 算法 工程类 数学 机器学习 程序设计语言 数学分析 操作系统 滤波器(信号处理) 计算机视觉 电子工程
作者
Ruijun Chen,Yaw-Shyan Tsay,Shiwen Ni
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:359: 131978-131978 被引量:65
标识
DOI:10.1016/j.jclepro.2022.131978
摘要

In this paper, we proposed an integrated optimization framework to explore minimum building carbon emissions (BCE), indoor discomfort hours (IDH), and global cost (GC) of building, as well as a new formula for selecting the best scheme in the Pareto front set. Such framework improves the efficiency of the optimization process, the accuracy of the results, and the rationality of the best scheme. The entire optimization process can be divided into four steps. First, the input parameters were randomly generated using three sampling methods and then simulated to build the database. Then, the contribution rates of the selected parameters to the outputs were comprehensively evaluated and combined with multi-sensitivity analysis methods to screen important parameters. Next, we trained and validated the Back Propagation Neural Network (BPNN) model, in which different methods were used for hyperparametric optimization. Third, based on the comparison of various optimization methods, the Non-dominated Sorting Genetic Algorithm-III (NSGA-III) was selected and combined with BPNN to solve the proposed multi-objective optimization problem. Then, finally, we applied the proposed optimal balance formula to select the scheme that considered all aspects of objectives in the Pareto front set. The results demonstrated that the best sampling method and hyperparameter combination can result in an R2 of BPNN that reaches 0.992. The simulation results are in good agreement with the optimization results. Compared with the case building, the optimal balance schemes of BCE, IDH, and GC were reduced by 53.25%, 42.95%, and 22.33%, respectively. Therefore, we demonstrated that this method is feasible and effective for improving building design in more practical and complex situations and can be widely popularized in the building performance optimization field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观完成签到 ,获得积分10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
1秒前
李健应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2秒前
4秒前
Lucas应助Fe采纳,获得10
5秒前
Wayi发布了新的文献求助10
7秒前
能干戎完成签到,获得积分10
8秒前
9秒前
9秒前
piers应助Wang0102采纳,获得10
9秒前
lyx完成签到,获得积分10
10秒前
10秒前
10秒前
Wayi完成签到,获得积分10
11秒前
DentistRui完成签到,获得积分10
11秒前
11秒前
Lucas应助Clam采纳,获得10
12秒前
LYQ完成签到 ,获得积分10
12秒前
万能图书馆应助祖丽采纳,获得10
12秒前
13秒前
13秒前
hs完成签到,获得积分10
13秒前
14秒前
淡淡向卉发布了新的文献求助10
16秒前
yuancaix完成签到,获得积分10
16秒前
Bob发布了新的文献求助10
16秒前
锐利之金完成签到,获得积分10
17秒前
17秒前
CAOHOU举报tjj求助涉嫌违规
18秒前
18秒前
19秒前
紫草发布了新的文献求助10
19秒前
小白完成签到,获得积分10
19秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4120736
求助须知:如何正确求助?哪些是违规求助? 3658966
关于积分的说明 11582363
捐赠科研通 3360471
什么是DOI,文献DOI怎么找? 1846429
邀请新用户注册赠送积分活动 911198
科研通“疑难数据库(出版商)”最低求助积分说明 827352