Rolling Surface Defect Inspection for Drum-Shaped Rollers Based on Deep Learning

人工智能 计算机科学 曲面(拓扑) 工程类 材料科学 深度学习 工程制图 机械工程 数学 几何学
作者
Jiamin Tao,Yongjian Zhu,Frank Jiang,Hao Liu,Hongzhan Liu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (9): 8693-8700 被引量:37
标识
DOI:10.1109/jsen.2022.3159743
摘要

It is difficult to detect defects such as shallow dents and rust on rolling surfaces by using the traditional vision-based surface inspection method (line light source and line array camera mode) which has a low sensitivity to these defects. This paper presents a method that introduces the fringe projection technique for traditional visual inspection devices to overcome the limitations of the traditional methods and uses deep-learning techniques for detecting defects such as cuts, abrasions, dents, and rust on the rolling surfaces of drum-shaped rollers. A new artificial-intelligence-based labeling method, namely, the Padua Incremental Mask Labeling Method, has been introduced for accelerating the calibration process used for defect detection, and based on a one-stage architecture, the You-Only-Look-Once-OurNet (YOLO-OurNet) deep-learning network has been designed for detecting the defects on the rolling surfaces of drum-shaped rollers. From the results of the experimental tests, the time required for detecting a defect has been found to be 0.024s, an accuracy rate of up to 99.2%, and the value of object detection evaluation index F1 of up to 0.988. Our method outperforms the related method on the domain of rolling surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duzhi完成签到 ,获得积分10
5秒前
ZCN发布了新的文献求助10
8秒前
dodo发布了新的文献求助10
10秒前
14秒前
riccixuu完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
20秒前
幸福妙柏发布了新的文献求助10
20秒前
21秒前
21秒前
海心完成签到 ,获得积分10
21秒前
22秒前
bkagyin应助aaaabc采纳,获得10
22秒前
落寞归尘完成签到 ,获得积分10
24秒前
香蕉觅云应助ZCN采纳,获得10
25秒前
JialiZhao完成签到,获得积分20
25秒前
ZhangY发布了新的文献求助10
26秒前
26秒前
26秒前
26秒前
TRY发布了新的文献求助10
27秒前
27秒前
28秒前
草帽完成签到,获得积分10
29秒前
学术骗子小刚完成签到,获得积分0
29秒前
30秒前
30秒前
32秒前
32秒前
33秒前
33秒前
34秒前
草帽发布了新的文献求助10
34秒前
35秒前
Heidi完成签到 ,获得积分10
35秒前
36秒前
36秒前
yydragen应助weiyinglin采纳,获得30
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964702
求助须知:如何正确求助?哪些是违规求助? 3510211
关于积分的说明 11152177
捐赠科研通 3244415
什么是DOI,文献DOI怎么找? 1792395
邀请新用户注册赠送积分活动 873801
科研通“疑难数据库(出版商)”最低求助积分说明 803980