电催化剂
电解质
硫黄
电池(电)
锂硫电池
材料科学
储能
化学工程
电极
化学
无机化学
纳米技术
电化学
物理化学
冶金
工程类
量子力学
物理
功率(物理)
作者
Zheng Huang,Wei Wang,Wei‐Li Song,Mingyong Wang,Haosen Chen,Shuqiang Jiao,Daining Fang
标识
DOI:10.1002/anie.202202696
摘要
Aluminum-sulfur (Al-S) batteries of ultrahigh energy-to-price ratios are a promising energy storage technology, while they suffer from a large voltage gap and short lifespan. Herein, we propose an electrocatalyst-boosting quasi-solid-state Al-S battery, which involves a sulfur-anchored cobalt/nitrogen co-doped graphene (S@CoNG) positive electrode and an ionic-liquid-impregnated metal-organic framework (IL@MOF) electrolyte. The Co-N4 sites in CoNG continuously catalyze the breaking of Al-Cl and S-S bonds and accelerate the sulfur conversion, endowing the Al-S battery with a shortened voltage gap of 0.43 V and a high discharge voltage plateau of 0.9 V. In the quasi-solid-state IL@MOF electrolytes, the shuttle effect of polysulfides has been inhibited, which stabilizes the reversible sulfur reaction, enabling the Al-S battery to deliver 820 mAh g-1 specific capacity and 78 % capacity retention after 300 cycles. This finding offers novel insights to design Al-S batteries for stable energy storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI