Recurrent 3D Hand Pose Estimation Using Cascaded Pose-Guided 3D Alignments

姿势 人工智能 关节式人体姿态估计 三维姿态估计 计算机科学 计算机视觉 边距(机器学习) 循环神经网络 特征提取 模式识别(心理学) 特征(语言学) 人工神经网络 机器学习 语言学 哲学
作者
Xiaoming Deng,Dexin Zuo,Yinda Zhang,Zhaopeng Cui,Jian Cheng,Ping Tan,Liang Chang,Marc Pollefeys,Sean Fanello,Hongan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (1): 932-945 被引量:18
标识
DOI:10.1109/tpami.2022.3159725
摘要

3D hand pose estimation is a challenging problem in computer vision due to the high degrees-of-freedom of hand articulated motion space and large viewpoint variation. As a consequence, similar poses observed from multiple views can be dramatically different. In order to deal with this issue, view-independent features are required to achieve state-of-the-art performance. In this paper, we investigate the impact of view-independent features on 3D hand pose estimation from a single depth image, and propose a novel recurrent neural network for 3D hand pose estimation, in which a cascaded 3D pose-guided alignment strategy is designed for view-independent feature extraction and a recurrent hand pose module is designed for modeling the dependencies among sequential aligned features for 3D hand pose estimation. In particular, our cascaded pose-guided 3D alignments are performed in 3D space in a coarse-to-fine fashion. First, hand joints are predicted and globally transformed into a canonical reference frame; Second, the palm of the hand is detected and aligned; Third, local transformations are applied to the fingers to refine the final predictions. The proposed recurrent hand pose module for aligned 3D representation can extract recurrent pose-aware features and iteratively refines the estimated hand pose. Our recurrent module could be utilized for both single-view estimation and sequence-based estimation with 3D hand pose tracking. Experiments show that our method improves the state-of-the-art by a large margin on popular benchmarks with the simple yet efficient alignment and network architectures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Turb发布了新的文献求助10
刚刚
科研通AI5应助悦耳冰蓝采纳,获得10
1秒前
爆米花应助chem采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
深海鳕鱼子完成签到,获得积分10
3秒前
3秒前
lxl1996完成签到,获得积分10
3秒前
尊敬飞丹发布了新的文献求助10
4秒前
袁袁完成签到,获得积分10
4秒前
5秒前
5秒前
易帜完成签到 ,获得积分10
5秒前
Queen发布了新的文献求助10
5秒前
6秒前
6秒前
sandy_bear发布了新的文献求助10
6秒前
7秒前
幕雪完成签到,获得积分10
7秒前
水芸发布了新的文献求助10
7秒前
8秒前
8秒前
scxert完成签到,获得积分10
9秒前
llanncy完成签到,获得积分10
9秒前
9秒前
10秒前
coco完成签到,获得积分10
10秒前
choumaoo完成签到,获得积分10
10秒前
Owen应助莫愁采纳,获得10
11秒前
11秒前
13秒前
33发布了新的文献求助10
13秒前
蓝天应助席松采纳,获得20
13秒前
lostinlab完成签到,获得积分10
13秒前
may发布了新的文献求助10
13秒前
Levis_study发布了新的文献求助20
13秒前
可爱的函函应助ybwei2008_163采纳,获得10
13秒前
14秒前
infinity发布了新的文献求助30
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4224201
求助须知:如何正确求助?哪些是违规求助? 3757377
关于积分的说明 11811187
捐赠科研通 3419305
什么是DOI,文献DOI怎么找? 1876651
邀请新用户注册赠送积分活动 930243
科研通“疑难数据库(出版商)”最低求助积分说明 838452