Raman hyperspectral imaging coupled to three-dimensional discriminant analysis: Classification of meningiomas brain tumour grades

线性判别分析 脑膜瘤 高光谱成像 主成分分析 医学 放射科 人工智能 模式识别(心理学) 计算机科学
作者
Taha Lilo,Camilo L. M. Morais,Katherine M. Ashton,Charles H. Davis,Timothy Dawson,Francis L. Martin,Jane Alder,Gareth Roberts,Arup Ray,Nihal Gurusinghe
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:273: 121018-121018 被引量:9
标识
DOI:10.1016/j.saa.2022.121018
摘要

Meningiomas remains a clinical dilemma. They are the commonest "benign" types of brain tumours and, although being typically benign, they are divided into three WHO grades categories (I, II and III) which are associated with the tumour growth rate and likelihood of recurrence. Recurrence depends on extend of surgery as well as histopathological diagnosis. There is a marked variation amongst surgeons in the follow-up arrangements for their patients even within the same unit which has a significant clinical, and financial implication. Knowing the tumour grade rapidly is an important factor to predict surgical outcomes and adequate patient treatment. Clinical follow up sometimes is haphazard and not based on clear evidence. Spectrochemical techniques are a powerful tool for cancer diagnostics. Raman hyperspectral imaging is able to generate spatially-distributed spectrochemical signatures with great sensitivity. Using this technique, 95 brain tissue samples (66 meningiomas WHO grade I, 24 meningiomas WHO grade II and 5 meningiomas that reoccurred) were analysed in order to discriminate grade I and grade II samples. Newly-developed three-dimensional discriminant analysis algorithms were used to process the hyperspectral imaging data in a 3D fashion. Three-dimensional principal component analysis quadratic discriminant analysis (3D-PCA-QDA) was able to distinguish grade I and grade II meningioma samples with 96% test accuracy (100% sensitivity and 95% specificity). This technique is here shown to be a high-throughput, reagent-free, non-destructive, and can give accurate predictive information regarding the meningioma tumour grade, hence, having enormous clinical potential with regards to being developed for intra-operative real-time assessment of disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤汤完成签到 ,获得积分10
1秒前
平常的毛豆应助zxer采纳,获得10
1秒前
zhou完成签到,获得积分10
2秒前
einspringen发布了新的文献求助10
5秒前
happy完成签到 ,获得积分10
7秒前
lxl完成签到,获得积分10
8秒前
酷波er应助悦耳的乐松采纳,获得10
8秒前
淡淡的筝完成签到,获得积分10
10秒前
11秒前
13秒前
迷途发布了新的文献求助10
15秒前
15秒前
Jiao完成签到,获得积分10
16秒前
16秒前
卡皮巴拉yuan应助dzx采纳,获得10
16秒前
小费发布了新的文献求助20
18秒前
英姑应助weifeng采纳,获得10
18秒前
害羞的网络完成签到,获得积分10
19秒前
ranjeah完成签到 ,获得积分10
19秒前
20秒前
April发布了新的文献求助10
23秒前
乐乐应助小罗采纳,获得10
23秒前
李健应助二狗儿采纳,获得10
25秒前
傲娇问晴完成签到,获得积分20
27秒前
chayue完成签到,获得积分10
28秒前
科目三应助max采纳,获得10
30秒前
30秒前
31秒前
31秒前
华仔应助einspringen采纳,获得10
31秒前
纯真皮卡丘完成签到 ,获得积分10
33秒前
小蘑菇应助傲娇问晴采纳,获得10
33秒前
35秒前
35秒前
ww完成签到 ,获得积分10
35秒前
ddfighting发布了新的文献求助10
35秒前
小费完成签到,获得积分20
35秒前
ZHY发布了新的文献求助10
35秒前
36秒前
小罗发布了新的文献求助10
37秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805231
求助须知:如何正确求助?哪些是违规求助? 3350217
关于积分的说明 10347937
捐赠科研通 3066112
什么是DOI,文献DOI怎么找? 1683536
邀请新用户注册赠送积分活动 809047
科研通“疑难数据库(出版商)”最低求助积分说明 765205