Raman hyperspectral imaging coupled to three-dimensional discriminant analysis: Classification of meningiomas brain tumour grades

线性判别分析 脑膜瘤 高光谱成像 主成分分析 医学 放射科 人工智能 模式识别(心理学) 计算机科学
作者
Taha Lilo,Camilo L. M. Morais,Katherine M. Ashton,Charles H. Davis,Timothy Dawson,Francis L. Martin,Jane Alder,Gareth Roberts,Arup Ray,Nihal Gurusinghe
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:273: 121018-121018 被引量:9
标识
DOI:10.1016/j.saa.2022.121018
摘要

Meningiomas remains a clinical dilemma. They are the commonest "benign" types of brain tumours and, although being typically benign, they are divided into three WHO grades categories (I, II and III) which are associated with the tumour growth rate and likelihood of recurrence. Recurrence depends on extend of surgery as well as histopathological diagnosis. There is a marked variation amongst surgeons in the follow-up arrangements for their patients even within the same unit which has a significant clinical, and financial implication. Knowing the tumour grade rapidly is an important factor to predict surgical outcomes and adequate patient treatment. Clinical follow up sometimes is haphazard and not based on clear evidence. Spectrochemical techniques are a powerful tool for cancer diagnostics. Raman hyperspectral imaging is able to generate spatially-distributed spectrochemical signatures with great sensitivity. Using this technique, 95 brain tissue samples (66 meningiomas WHO grade I, 24 meningiomas WHO grade II and 5 meningiomas that reoccurred) were analysed in order to discriminate grade I and grade II samples. Newly-developed three-dimensional discriminant analysis algorithms were used to process the hyperspectral imaging data in a 3D fashion. Three-dimensional principal component analysis quadratic discriminant analysis (3D-PCA-QDA) was able to distinguish grade I and grade II meningioma samples with 96% test accuracy (100% sensitivity and 95% specificity). This technique is here shown to be a high-throughput, reagent-free, non-destructive, and can give accurate predictive information regarding the meningioma tumour grade, hence, having enormous clinical potential with regards to being developed for intra-operative real-time assessment of disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吃了就会胖完成签到 ,获得积分10
刚刚
zhou发布了新的文献求助10
刚刚
阿拉完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
Faceman发布了新的文献求助20
4秒前
5秒前
JamesPei应助成就的迎夏采纳,获得10
6秒前
猪猪hero应助郭2采纳,获得10
6秒前
鲸鱼发布了新的文献求助10
6秒前
7秒前
Yangon完成签到,获得积分20
9秒前
领导范儿应助葳蕤采纳,获得10
13秒前
hanatae发布了新的文献求助20
14秒前
zllres完成签到,获得积分10
14秒前
15秒前
小唐完成签到,获得积分10
15秒前
温暖书雪完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
眼睛大的代丝完成签到,获得积分10
18秒前
qsj完成签到,获得积分10
21秒前
22秒前
22秒前
田様应助香蕉曼寒采纳,获得10
25秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
猪肉超人菜婴蚊完成签到,获得积分10
27秒前
洛言lj完成签到,获得积分10
28秒前
打打应助liu123456采纳,获得10
28秒前
量子星尘发布了新的文献求助10
29秒前
江阳宏发布了新的文献求助10
29秒前
30秒前
Faceman完成签到,获得积分10
33秒前
洛言lj发布了新的文献求助10
34秒前
思源应助lajdb采纳,获得10
36秒前
大模型应助大有阳光采纳,获得10
37秒前
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826833
求助须知:如何正确求助?哪些是违规求助? 6019030
关于积分的说明 15570804
捐赠科研通 4946917
什么是DOI,文献DOI怎么找? 2665092
邀请新用户注册赠送积分活动 1610996
关于科研通互助平台的介绍 1565872