亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Machine Learning for the Early Prediction of the Severity of Acute Pancreatitis in Hospitals

急性胰腺炎 接收机工作特性 机器学习 人工智能 逻辑回归 试验装置 特征(语言学) 医学 曲线下面积 鉴定(生物学) 计算机科学 统计 内科学 数学 哲学 语言学 植物 生物
作者
Minyue Yin,Rufa Zhang,Zhirun Zhou,Lu Liu,Jinghong Gao,Wei Xu,Chenyan Yu,Jiaxi Lin,Xiaolin Liu,Chunfang Xu,Jinzhou Zhu
出处
期刊:Frontiers in Cellular and Infection Microbiology [Frontiers Media]
卷期号:12 被引量:4
标识
DOI:10.3389/fcimb.2022.886935
摘要

Machine learning (ML) algorithms are widely applied in building models of medicine due to their powerful studying and generalizing ability. This study aims to explore different ML models for early identification of severe acute pancreatitis (SAP) among patients hospitalized for acute pancreatitis.This retrospective study enrolled patients with acute pancreatitis (AP) from multiple centers. Data from the First Affiliated Hospital and Changshu No. 1 Hospital of Soochow University were adopted for training and internal validation, and data from the Second Affiliated Hospital of Soochow University were adopted for external validation from January 2017 to December 2021. The diagnosis of AP and SAP was based on the 2012 revised Atlanta classification of acute pancreatitis. Models were built using traditional logistic regression (LR) and automated machine learning (AutoML) analysis with five types of algorithms. The performance of models was evaluated by the receiver operating characteristic (ROC) curve, the calibration curve, and the decision curve analysis (DCA) based on LR and feature importance, SHapley Additive exPlanation (SHAP) Plot, and Local Interpretable Model Agnostic Explanation (LIME) based on AutoML.A total of 1,012 patients were included in this study to develop the AutoML models in the training/validation dataset. An independent dataset of 212 patients was used to test the models. The model developed by the gradient boost machine (GBM) outperformed other models with an area under the ROC curve (AUC) of 0.937 in the validation set and an AUC of 0.945 in the test set. Furthermore, the GBM model achieved the highest sensitivity value of 0.583 among these AutoML models. The model developed by eXtreme Gradient Boosting (XGBoost) achieved the highest specificity value of 0.980 and the highest accuracy of 0.958 in the test set.The AutoML model based on the GBM algorithm for early prediction of SAP showed evident clinical practicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助喵喵采纳,获得10
3秒前
11秒前
喵喵发布了新的文献求助10
15秒前
30秒前
Ji发布了新的文献求助10
36秒前
Ji完成签到,获得积分10
49秒前
1分钟前
1分钟前
失眠思远发布了新的文献求助10
1分钟前
CodeCraft应助儒雅老太采纳,获得10
1分钟前
华仔应助甜甜亦丝采纳,获得10
1分钟前
1分钟前
今后应助曼曼采纳,获得10
1分钟前
甜甜亦丝发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
曼曼发布了新的文献求助10
2分钟前
曼曼完成签到,获得积分10
2分钟前
FWCY发布了新的文献求助10
2分钟前
赘婿应助小婷君采纳,获得10
2分钟前
2分钟前
小婷君完成签到,获得积分10
2分钟前
小婷君发布了新的文献求助10
2分钟前
2分钟前
mir为少发布了新的文献求助10
3分钟前
mir为少完成签到,获得积分20
3分钟前
香蕉觅云应助喵喵采纳,获得10
3分钟前
华仔应助mir为少采纳,获得10
3分钟前
3分钟前
3分钟前
儒雅老太发布了新的文献求助10
3分钟前
喵喵发布了新的文献求助10
3分钟前
尊敬的小凡完成签到,获得积分10
3分钟前
熬夜猝死的我完成签到,获得积分10
4分钟前
FashionBoy应助喵喵采纳,获得10
4分钟前
5分钟前
喵喵发布了新的文献求助10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078540
求助须知:如何正确求助?哪些是违规求助? 4297273
关于积分的说明 13388009
捐赠科研通 4120046
什么是DOI,文献DOI怎么找? 2256401
邀请新用户注册赠送积分活动 1260687
关于科研通互助平台的介绍 1194374