BIM generation from 3D point clouds by combining 3D deep learning and improved morphological approach

点云 计算机科学 参数统计 稳健性(进化) 建筑信息建模 人工智能 3D城市模型 深度学习 多边形(计算机图形学) 网格 参数曲面 分割 建筑模型 数据挖掘 计算机视觉 可视化 模拟 工程类 统计 化学 相容性(地球化学) 帧(网络) 基因 电信 生物化学 化学工程 数学 几何学
作者
Shengjun Tang,Xiaoming Li,Xianwei Zheng,Bo Wu,Weixi Wang,Yunjie Zhang
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:141: 104422-104422 被引量:57
标识
DOI:10.1016/j.autcon.2022.104422
摘要

The demand for the models of BIM has increased due to the numerous applications in emergency response and location-based services. Creating a semantically rich 3D interior model has traditionally been a very manual process. Although the latest LiDAR scanning and photogrammetry techniques efficiently capture the existing building, the automatic reconstruction of complete volumetric and functional interior models is still an intensive and challenging research topic. This paper presents a novel parametric modeling method for reconstructing semantic volumetric building interiors from the unstructured point cloud of a building. Unlike existing partitioning-based methods, our proposed method overcomes the limitations by providing a flexible framework for combining 3D Deep Learning and an improved morphological approach for inverse BIM modeling. By employing a flexible and robust three-step mechanism, the proposed method first classifies the point cloud into thirteen types using a 3D Deep Learning method, then extracts the surfaces and generates the initial feature space. In regularizing the space and modeling BIM, the space boundaries are optimized by formulating the subordination between the grid cells generated by walls and the segmented boundary shapes generated by the gridded floor plan through energy minimization. Then, a grammar-enhanced point-line polygon and parametric description are designed to generate the final BIM model. By using a robust space partitioning and optimization method, three main goals are achieved: recovery of geometric and semantic information, robustness in different data sources (especially in non-Manhattan scenes), parametric BIM modeling in our proposed method. The paper demonstrates the potential of our algorithms for both RGB-D and LiDAR point clouds acquired from scenes in Manhattan and outside Manhattan. Experimental results show that this method is capable of automatically generating a geometrically and semantically consistent BIM model that is competitive with the existing method in terms of geometric accuracy and model completeness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thinking发布了新的文献求助10
刚刚
一个zzq发布了新的文献求助10
刚刚
打打应助111采纳,获得10
1秒前
Amber完成签到,获得积分10
2秒前
小白加油完成签到 ,获得积分10
2秒前
2秒前
傅剑完成签到,获得积分10
2秒前
2秒前
hahage完成签到,获得积分10
3秒前
英勇笑萍完成签到,获得积分10
3秒前
3秒前
复杂的天玉完成签到,获得积分10
4秒前
JOE68完成签到,获得积分10
5秒前
耍酷鼠标完成签到 ,获得积分0
5秒前
伊雪儿完成签到,获得积分10
5秒前
Zhang完成签到,获得积分10
6秒前
kingtongx发布了新的文献求助10
6秒前
6秒前
GB完成签到 ,获得积分10
6秒前
丘比特应助li采纳,获得10
6秒前
善良的紫菜完成签到,获得积分10
6秒前
小小鱼完成签到,获得积分10
6秒前
爪爪完成签到,获得积分10
6秒前
满意白玉发布了新的文献求助10
7秒前
时光友岸完成签到,获得积分10
8秒前
吃瓜群众完成签到,获得积分10
8秒前
孤独尔安发布了新的文献求助10
9秒前
liuyx完成签到 ,获得积分10
10秒前
kingtongx完成签到,获得积分10
10秒前
johnwick完成签到,获得积分10
10秒前
11秒前
王迎迎完成签到,获得积分10
11秒前
lzh完成签到,获得积分10
11秒前
星辰大海应助黑色幽默采纳,获得10
12秒前
12秒前
lingling发布了新的文献求助10
12秒前
踏实愚志完成签到,获得积分10
13秒前
NexusExplorer应助ZXDDDD采纳,获得10
13秒前
喜悦的水云完成签到 ,获得积分10
13秒前
小欢完成签到,获得积分10
15秒前
高分求助中
Mehr Wasserstoff mit weniger Iridium 1000
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834161
求助须知:如何正确求助?哪些是违规求助? 3376720
关于积分的说明 10494415
捐赠科研通 3096112
什么是DOI,文献DOI怎么找? 1704857
邀请新用户注册赠送积分活动 820189
科研通“疑难数据库(出版商)”最低求助积分说明 771885