矢状面
生物力学
脚踝
运动学
地面反作用力
步态
部队平台
步态分析
解剖
数学
口腔正畸科
医学
材料科学
大地测量学
物理医学与康复
物理
地质学
经典力学
作者
Patrick T. Hall,Caleb Stubbs,David E. Anderson,Cheryl B. Greenacre,Dustin L. Crouch
出处
期刊:PeerJ
[PeerJ, Inc.]
日期:2022-06-17
卷期号:10: e13611-e13611
被引量:10
摘要
Though the rabbit is a common animal model in musculoskeletal research, there are very limited data reported on healthy rabbit biomechanics. Our objective was to quantify the normative hindlimb biomechanics (kinematics and kinetics) of six New Zealand White rabbits (three male, three female) during the stance phase of gait. We measured biomechanics by synchronously recording sagittal plane motion and ground contact pressure using a video camera and pressure-sensitive mat, respectively. Both foot angle (i.e., angle between foot and ground) and ankle angle curves were unimodal. The maximum ankle dorsiflexion angle was 66.4 ± 13.4° (mean ± standard deviation across rabbits) and occurred at 38% stance, while the maximum ankle plantarflexion angle was 137.2 ± 4.8° at toe-off (neutral ankle angle = 90 degrees). Minimum and maximum foot angles were 17.2 ± 6.3° at 10% stance and 123.3 ± 3.6° at toe-off, respectively. The maximum peak plantar pressure and plantar contact area were 21.7 ± 4.6% BW/cm2 and 7.4 ± 0.8 cm2 respectively. The maximum net vertical ground reaction force and vertical impulse, averaged across rabbits, were 44.0 ± 10.6% BW and 10.9 ± 3.7% BW∙s, respectively. Stance duration (0.40 ± 0.15 s) was statistically significantly correlated (p < 0.05) with vertical impulse (Spearman's ρ = 0.76), minimum foot angle (ρ = -0.58), plantar contact length (ρ = 0.52), maximum foot angle (ρ = 0.41), and minimum foot angle (ρ = -0.30). Our study confirmed that rabbits exhibit a digitigrade gait pattern during locomotion. Future studies can reference our data to quantify the extent to which clinical interventions affect rabbit biomechanics.
科研通智能强力驱动
Strongly Powered by AbleSci AI