L0-norm gravity inversion with new depth weighting function and bound constraints

加权 反演(地质) 核密度估计 缩小 合成数据 地质学 算法 规范(哲学) a计权 反变换采样 数学优化 数学
作者
Mesay Geletu Gebre,Elias Lewi
出处
期刊:Acta Geophysica [Springer Science+Business Media]
标识
DOI:10.1007/s11600-022-00806-7
摘要

Delineating geologic features through the inversion of gravity data is an important goal in a range of geophysical investigations. However, it is a well-known fact that gravity data inversion has no inherent depth resolution. In order to overcome this limitation, different depth weighting approaches have been developed. With the purpose of finding an effective and a more convenient way to precisely estimate the depth of the anomalous body, we have tested the most popularly used depth weighting function. Our test showed that it does not properly counteract the decay of the gravity kernel and is strongly dependent on the exponent term. To resolve this, we have proposed a new depth weighting function that can easily be automated and counteracts the depth dependent natural decay of the gravity kernel more appropriately. Through this, the challenges in trial and error selection of the exponent of the old depth weighting function are avoided. The new depth weighing function was then implemented to improve a gravity inversion method, which produces compact and sharp images of the subsurface density distributions. The inversion method is obtained from the minimization of an objective function, which consists of data misfit and L0-norm stabilizing functions, by iteratively reweighted least-squares algorithm. To evaluate the practicality and resolution capability of the method, it was tested using a number of synthetic data sets from geometrically complex models and real data. The inversion results proved the effectiveness of our method in producing geologically acceptable multiple localized bodies with improved depth resolution. This in turn illustrates the applicability of the newly proposed function in the inversion of gravity data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Wecple采纳,获得10
1秒前
钢笔发布了新的文献求助10
1秒前
2秒前
2秒前
Alnair发布了新的文献求助10
3秒前
4秒前
4秒前
Orange应助翻似烂柯人采纳,获得10
5秒前
6秒前
123发布了新的文献求助10
6秒前
Aicy1111111完成签到,获得积分10
7秒前
azw发布了新的文献求助10
8秒前
zephyr完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
Geminiwod发布了新的文献求助10
11秒前
zephyr发布了新的文献求助10
11秒前
李霁航关注了科研通微信公众号
11秒前
不羁的风完成签到 ,获得积分10
12秒前
小沉沉发布了新的文献求助10
13秒前
打打应助5552222采纳,获得10
13秒前
15秒前
15秒前
16秒前
18秒前
图图完成签到 ,获得积分10
18秒前
NexusExplorer应助无语的凌瑶采纳,获得10
18秒前
科目三应助zzzcx采纳,获得10
19秒前
20秒前
20秒前
21秒前
Iris完成签到 ,获得积分10
22秒前
小枫发布了新的文献求助10
22秒前
22秒前
kekeke科发布了新的文献求助10
23秒前
情怀应助蛰伏的小宇宙采纳,获得10
24秒前
25秒前
沙猛发布了新的文献求助20
25秒前
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4160209
求助须知:如何正确求助?哪些是违规求助? 3695967
关于积分的说明 11671937
捐赠科研通 3387680
什么是DOI,文献DOI怎么找? 1857633
邀请新用户注册赠送积分活动 918590
科研通“疑难数据库(出版商)”最低求助积分说明 831605