Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting

化学 过电位 磷化物 催化作用 析氧 分解水 过渡金属 电解水 电解质 基质(水族馆) 电子转移 交换电流密度 无机化学 电化学 电解 化学工程 塔菲尔方程 物理化学 电极 有机化学 光催化 工程类 地质学 海洋学
作者
Gong Zhang,Gui‐Chang Wang,Yang Liu,Huijuan Liu,Jiuhui Qu,Jinghong Li
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:138 (44): 14686-14693 被引量:692
标识
DOI:10.1021/jacs.6b08491
摘要

Application of transition metal phosphide (TMP) catalysts for full water splitting has great potential to help relieve the energy crisis. Various methods have been investigated to obtain high catalytic activity, but the use of electronic structure regulation by incorporation of different elements is of particular simplicity and significance for development of a universal TMP synthesis method. We herein describe a novel approach for fabricating a series of TMPs by pyrolyzing phytic acid (PA) cross-linked metal complexes. The introduction of oxygen atoms into TMPs not only enhanced their intrinsic electrical conductivity, facilitating electron transfer, but activated active sites via elongating the M–P bond, favoring the hydrogen evolution reaction (HER) or oxygen evolution reaction (OER). MoP exhibited relative low HER overpotentials of 118 mV and 93 mV while supporting a current density of 20 mA·cm–2 in 0.5 M H2SO4 and 1 M KOH electrolytes, respectively. When CoP was applied as a catalyst for OER, only 280 mV overpotential was required to reach current density of 10 mA·cm–2. Additionally, PA-containing precursors enabled intimate embedding of TMPs onto a flexible substrate surface (carbon cloth), so that electron injection from substrate and transport to the active sites was facilitated. Remarkably, an alkaline electrolyzer was able to achieve a current density of 40 mA·cm–2 at the low voltage of 1.6 V, demonstrating its potential for practical overall water splitting without the use of noble metals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Haozhe_Sang完成签到,获得积分10
刚刚
DaFei完成签到,获得积分20
1秒前
1秒前
WANG发布了新的文献求助10
1秒前
今后应助琥1采纳,获得10
1秒前
anan发布了新的文献求助10
1秒前
1秒前
2秒前
动听服饰发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
上官若男应助高贵觅山采纳,获得10
4秒前
4秒前
Jasper应助lixiaofei采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
6秒前
可乐乐乐发布了新的文献求助10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
蘑菇屋应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
JSDYCH完成签到,获得积分10
7秒前
888关闭了888文献求助
7秒前
田様应助科研通管家采纳,获得10
7秒前
冰魂应助科研通管家采纳,获得10
7秒前
7秒前
星辰大海应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
高高发布了新的文献求助10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814715
求助须知:如何正确求助?哪些是违规求助? 3358800
关于积分的说明 10397538
捐赠科研通 3076183
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813213
科研通“疑难数据库(出版商)”最低求助积分说明 767548