控制理论(社会学)
执行机构
观察员(物理)
非线性系统
线性矩阵不等式
李普希茨连续性
状态向量
断层(地质)
故障检测与隔离
转化(遗传学)
国家观察员
计算机科学
工程类
控制工程
数学
数学优化
控制(管理)
人工智能
数学分析
生物化学
化学
物理
经典力学
量子力学
地震学
基因
地质学
作者
Zhang Jian,Akshya Swain,Sing Kiong Nguang
摘要
Abstract This paper proposes a new scheme for estimating the actuator and sensor fault for Lipschitz nonlinear systems with unstructured uncertainties using the sliding mode observer (SMO) technique. Initially, a coordinate transformation is introduced to transform the original state vector into two parts such that the actuator faults only appear in the dynamics of the second state vector. The concept of equivalent output error injection is then employed to estimate the actuator fault. The effects of system uncertainties on the estimation errors of states and faults are minimized by integrating an uncertainty attenuation level into the observer. The sufficient conditions for the state estimation error to be bounded and satisfy a prescribed performance are derived and expressed as a linear matrix inequality (LMI) optimization problem. Furthermore, the proposed actuator fault estimation method is extended to sensor fault estimation. Finally, the effectiveness of the proposed scheme in estimating actuator and sensor faults has been illustrated considering an example of a single‐link flexible joint robot system.
科研通智能强力驱动
Strongly Powered by AbleSci AI