奇异值分解
稳健性(进化)
算法
奇异值
基质(化学分析)
递归最小平方滤波器
趋同(经济学)
计算机科学
最小二乘函数近似
鉴定(生物学)
矩阵分解
收敛速度
分解
理论(学习稳定性)
数学
数学优化
自适应滤波器
钥匙(锁)
机器学习
特征向量
统计
经济增长
材料科学
化学
估计员
经济
复合材料
生态学
物理
生物化学
基因
生物
计算机安全
量子力学
植物
作者
Youmin Zhang,Qingguo Li,Guanzhong Dai,Hongcai Zhang
标识
DOI:10.1109/cdc.1994.411186
摘要
Based on singular value decomposition (SVD), a new recursive least-squares identification method, which takes in account input excitation, is proposed in this paper. It is demonstrated that the SVD-based approach proposed in this paper can not only obviously improve the convergence rate, numerical stability of RLS, but also provide much more precise identification results and greatly enhance the robustness of the system identification. Moreover, this algorithm is formulated in the form of vector-matrix and matrix-matrix operations, so it is also useful for parallel computers.< >
科研通智能强力驱动
Strongly Powered by AbleSci AI