泽尼克多项式
雅可比多项式
光谱(功能分析)
数学
近似理论
正交多项式
Gegenbauer多项式
集合(抽象数据类型)
多项式的
平方(代数)
差分多项式
连接(主束)
经典正交多项式
数学分析
光学
几何学
物理
计算机科学
量子力学
波前
程序设计语言
作者
М. В. Свечников,Н. И. Чхало,М. Н. Торопов,Н. Н. Салащенко
出处
期刊:Optics Express
[The Optical Society]
日期:2015-05-27
卷期号:23 (11): 14677-14677
被引量:28
摘要
Circular Zernike polynomials are often used for approximation and analysis of optical surfaces. In this paper, we analyse their lateral resolving capacity, illustrating the effects of a lack of approximation by a finite set of polynomials and answering the following questions: What is the minimum number of polynomials that is necessary to describe a local deformation of a certain size? What is the relationship between the number of approximating polynomials and the spatial spectrum of the approximation? What is the connection between the mean-square error of approximation and the number of polynomials? The main results of this work are the formulas for calculating the error of fitting the relief and the connection between the width of the spatial spectrum and the order of approximation.
科研通智能强力驱动
Strongly Powered by AbleSci AI