MNIST数据库
乙状窦函数
神经形态工程学
激活函数
双曲函数
光子学
非线性系统
计算机科学
正弦
人工神经网络
指数函数
电子工程
算法
人工智能
物理
数学
光学
数学分析
工程类
几何学
量子力学
作者
Christos Pappas,Stefanos Kovaios,Miltiadis Moralis‐Pegios,Apostolos Tsakyridis,George Giamougiannis,Manos Kirtas,Joris Van Kerrebrouck,Gertjan Coudyzer,Xin Yin,Nikolaos Passalis,Anastasios Tefas,Nikos Pleros
标识
DOI:10.1109/jstqe.2023.3277118
摘要
We demonstrate a programmable analog opto-electronic (OE) circuit that can be configured to provide a range of nonlinear activation functions for incoherent neuromorphic photonic circuits at up to 10 Gbaud line-rates. We present a set of well-known activation functions that are typically used to train DL models including tanh-, sigmoid-, ReLU- and inverted ReLU-like activations, introducing also a series of novel photonic nonlinear functions that are referred to as Rectified Sine Squared (ReSin), Sine Squared with Exponential tail (ExpSin) and Double Sine Squared. Experimental validation for all these activation functions is performed at 10 Gbaud operation. The ability of the mathematically modelled photonic activation functions to train Deep Neural Networks (DNNs) has been verified through their employment in Deep Learning (DL) models for MNIST and CIFAR10 classification purposes, comparing their performance against corresponding NNs that utilize an ideal ReLU activation function.
科研通智能强力驱动
Strongly Powered by AbleSci AI