亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-Density Lipoprotein Particles, Inflammation, and Coronary Heart Disease Risk

炎症 冠心病 心脏病学 医学 内科学 脂蛋白 高密度脂蛋白 胆固醇
作者
Eveline O. Stock,Bela F. Asztalos,John M. Miller,Lihong He,Kate Townsend Creasy,Rachel Schwemberger,Alexander T. Quinn,Clive R. Pullinger,Mary J. Malloy,Margaret R. Diffenderfer,John P. Kane
出处
期刊:Nutrients [Multidisciplinary Digital Publishing Institute]
卷期号:17 (7): 1182-1182 被引量:4
标识
DOI:10.3390/nu17071182
摘要

Background: Coronary heart disease (CHD) remains a leading cause of death and has been associated with alterations in plasma lipoprotein particles and inflammation markers. This study aimed to evaluate and compare standard and advanced lipid parameters and inflammatory biomarkers in CHD cases and matched control subjects. We hypothesized that incorporating advanced lipid and inflammatory biomarkers into risk models would improve CHD risk prediction beyond the standard lipid measures. Methods: CHD cases (n = 227, mean age 61 years, 47% female) and matched controls (n = 526) underwent fasting blood collection while off lipid-lowering medications. Automated chemistry analyses were performed to measure total cholesterol (TC), triglycerides (TGs), low-density lipoprotein-C (LDL-C), small dense LDL-C (sdLDL-C), apolipoproteins (apos) A-I and B, lipoprotein(a) (Lp(a)), high-sensitivity C-reactive protein (hsCRP), serum amyloid-A (SAA), myeloperoxidase (MPO), and apoA-I in HDL particles (via 2-dimensional electrophoresis and immunoblotting). Univariate, multivariate, and machine learning analyses compared the CHD cases with the controls. Results: The most significant percent differences between male and female cases versus controls were for hsCRP (+78%, +200%), MPO (+109%, +106%), SAA (+84%, +33%), sdLDL-C (+48%; +43%), Lp(a) (+43%,+70%), apoA-I in very large α-1 HDL (−34%, −26%), HDL-C (−24%, −27%), and apoA-I in very small preβ-1 HDL (+17%; +16%). Total C, non-HDL-C, and direct and calculated LDL-C levels were only modestly higher in the cases. Multivariate models incorporating advanced parameters were statistically superior to a standard model (C statistic: men: 0.913 vs. 0.856; women: 0.903 versus 0.838). Machine learning identified apoA-I in preβ-1-HDL, α-2-HDL, α-1-HDL, α-3-HDL, MPO, and sdLDL-C as the top predictors of CHD. Conclusions: This study introduces a novel approach to CHD risk assessment by integrating advanced HDL particle analysis and machine learning. By assessing HDL subpopulations (α-1, α-2, preβ-1 HDL), inflammatory biomarkers (MPO, SAA), and small dense LDL, we provide a more refined stratification model. Notably, preβ-1 HDL, an independent risk factor reflecting impaired cholesterol efflux from the artery wall, is highlighted as a critical marker of CHD risk. Our approach allows for earlier identification of high-risk individuals, particularly those with subtle lipid or inflammatory abnormalities, supporting more personalized interventions. These findings demonstrate the potential of advanced lipid profiling and machine learning to enhance CHD risk prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
8秒前
Prometheus发布了新的文献求助10
13秒前
VuuVuu发布了新的文献求助10
13秒前
GPTea应助科研通管家采纳,获得20
29秒前
华仔应助科研通管家采纳,获得10
29秒前
GPTea应助科研通管家采纳,获得20
29秒前
shentx发布了新的文献求助20
52秒前
53秒前
娜娜子完成签到 ,获得积分10
53秒前
李爱国应助无风采纳,获得10
1分钟前
上课就是看见完成签到,获得积分10
1分钟前
cc发布了新的文献求助10
1分钟前
英姑应助冰雪痕采纳,获得10
1分钟前
1分钟前
Wonder发布了新的文献求助10
1分钟前
cc完成签到,获得积分10
1分钟前
1分钟前
冰雪痕发布了新的文献求助10
1分钟前
研友_ngqoE8完成签到,获得积分10
1分钟前
1分钟前
漂亮夏兰完成签到 ,获得积分10
1分钟前
周浩宇完成签到,获得积分10
1分钟前
桐桐应助Prometheus采纳,获得10
1分钟前
1分钟前
粽子发布了新的文献求助10
2分钟前
蟪蛄鸪发布了新的文献求助10
2分钟前
2分钟前
平常的德天完成签到,获得积分20
2分钟前
小榕树完成签到,获得积分10
2分钟前
21完成签到 ,获得积分20
2分钟前
2分钟前
21关注了科研通微信公众号
2分钟前
ding应助粽子采纳,获得10
2分钟前
赵正洁完成签到 ,获得积分10
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
Lucas应助美美采纳,获得10
2分钟前
2分钟前
随心完成签到,获得积分10
2分钟前
长情小鹿完成签到 ,获得积分10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210369
求助须知:如何正确求助?哪些是违规求助? 4387232
关于积分的说明 13662568
捐赠科研通 4247011
什么是DOI,文献DOI怎么找? 2330082
邀请新用户注册赠送积分活动 1327804
关于科研通互助平台的介绍 1280386