Mechanical and Machining Properties of InP Wafers: A Combined Study via Theoretical Calculations, Molecular Dynamics Simulations, and Experimental Validation

分子动力学 机械加工 薄脆饼 材料科学 动力学(音乐) 纳米技术 化学物理 化学 计算化学 物理 冶金 声学
作者
Xiaoning Wen,Jiayun Deng,Zhihui Bai,Jie Geng,Hua Wei,Hanbao Liu,Feng Qiu,Hui Feng
出处
期刊:Langmuir [American Chemical Society]
标识
DOI:10.1021/acs.langmuir.4c05263
摘要

Single-crystal indium phosphide (InP) wafers, characterized by atomic-scale surface roughness and minimal subsurface damage, are ideal substrates for high-frequency microwave devices, optoelectronic applications (e.g., solar cells and large-scale integrated circuits), and military systems (e.g., guidance, navigation, and satellites). However, challenges arise during ultraprecision machining due to InP's low hardness, brittle-to-ductile transition behavior, and mechanical anisotropy across crystallographic planes, which compromise surface integrity and degrade material performance, epitaxial film quality, and device reliability. This study employs a multiscale approach integrating theoretical calculations, molecular dynamics (MD) simulations, and nanoindentation experiments to systematically explore the deformation mechanisms and damage evolution in InP wafers along the (100), (110), and (111) planes. Theoretical calculations indicate that the (100) plane exhibits moderate anisotropy with periodic symmetry, the (110) plane shows marked anisotropy, and the (111) plane demonstrates quasi-isotropic mechanical behavior. MD simulations reveal subsurface damage depths of 2×, 7×, and 2.5× the indentation depth for the (100), (110), and (111) planes, respectively. The difficulty in obtaining a high-quality, damage-free surface follows this order: (110) > (111) > (100). Additionally, more dislocations are observed in the (100) plane during the indentation process, with very few present in the (111) plane. Upon unloading, dislocations in the (100) plane decrease, while those in the (111) plane increase sharply. Nanoindentation experiments show that the (100) plane along the [01̅0] and [001̅] crystal directions has the lowest fracture toughness (0.31 and 0.374 MPa·m1/2), with cracks preferentially propagating along the ⟨100⟩ crystal direction family. By inhibiting crack propagation along ⟨100⟩, damage-free machining on the (100) plane is achievable. This work establishes a relationship between crystallographic anisotropy and machining-induced damage in InP wafers, offering theoretical guidance for optimizing ultraprecision machining processes in InP-based device fabrication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助yuaasusanaann采纳,获得10
1秒前
烟花应助单薄的八宝粥采纳,获得10
2秒前
mc发布了新的文献求助10
3秒前
Hello应助月明采纳,获得10
3秒前
写个锤子完成签到,获得积分10
4秒前
4秒前
隐形曼青应助LIU采纳,获得10
4秒前
易柒发布了新的文献求助50
5秒前
Ava应助好运小陈采纳,获得10
5秒前
乐乐应助陶一二采纳,获得10
5秒前
悦悦应助一定长采纳,获得10
5秒前
6秒前
6秒前
顾矜应助澄澄采纳,获得100
7秒前
天天快乐应助Magical采纳,获得10
7秒前
杨先生应助XPX采纳,获得10
7秒前
7秒前
Muccio完成签到 ,获得积分10
8秒前
9秒前
法桐落梦应助yyc采纳,获得10
9秒前
李爱国应助gy采纳,获得10
10秒前
Grace Lee完成签到,获得积分10
10秒前
恋雅颖月发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
崔崔发布了新的文献求助10
13秒前
13秒前
邱锐杰完成签到,获得积分20
14秒前
14秒前
安详的觅风完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
Captain完成签到,获得积分10
17秒前
热情紫易关注了科研通微信公众号
17秒前
乔康发布了新的文献求助10
17秒前
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4006128
求助须知:如何正确求助?哪些是违规求助? 3546059
关于积分的说明 11294662
捐赠科研通 3281950
什么是DOI,文献DOI怎么找? 1809820
邀请新用户注册赠送积分活动 885582
科研通“疑难数据库(出版商)”最低求助积分说明 811048