Toward In-Depth Mastery of Statistical Properties: Novel Stationary Moment Analysis With Application to Continuous Industrial Anomaly Detection

力矩(物理) 异常检测 异常(物理) 统计物理学 统计分析 数学 计算机科学 统计 物理 人工智能 经典力学 凝聚态物理
作者
Siwei Lou,Chunjie Yang,Weibin Wang,Hanwen Zhang,Yuchen Zhao,Ping Wu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:55 (7): 3417-3430
标识
DOI:10.1109/tcyb.2025.3556598
摘要

Anomaly detection is a cornerstone of industrial safety, enabling real-time monitoring of process operations by identifying deviations from normal conditions through statistical analysis. In real-world industrial scenarios, the nonstationary properties of multivariate time-series data present a common and substantial challenge. Existing methods for extracting stationary sources $(\mathcal {SS}s)$ mainly rely on weak stationarity (i.e., mean and variance), but their performance is limited by the long-tailed distributions common in industrial datasets. Higher-order moments, in contrast, provide a more comprehensive statistical description, capturing complex data characteristics that the mean and variance overlook. To bridge this significant gap, we propose a continuous stationary moment analysis (Co-SMA) anomaly detection framework. Its core innovation is the SMA algorithm, which introduces a novel objective function to minimize cumulative sum of the differences in multiorder moments between each epoch and the overall data, effectively fulfilling the $\mathcal {SS}$ estimation task. Furthermore, to overcome the inefficiencies of traditional model updating methods, we develop an event-triggered model updating framework based on the model bias index and first-order perturbation theory. Within this framework, we introduce a convex hull coverage metric, which enables the model to be adjusted efficiently according to the data distribution drift. The framework also incorporates iterative refinement of detection statistics and thresholds, establishing a dynamic adjustment mechanism that ensures optimal performance across diverse operating conditions. The theoretical basis of Co-SMA's properties is rigorously established. Experimental evaluations on numerical simulations and real-world datasets from the ironmaking process demonstrate Co-SMA's superior capabilities in $\mathcal {SS}$ estimation and anomaly detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
论文被猫叼走完成签到,获得积分10
5秒前
平淡从霜完成签到,获得积分10
5秒前
FashionBoy应助张文静采纳,获得10
5秒前
长度2到发布了新的文献求助10
6秒前
健忘霸发布了新的文献求助10
6秒前
xhz完成签到 ,获得积分10
7秒前
今天也要好好学习完成签到,获得积分10
8秒前
8秒前
追寻念云完成签到 ,获得积分10
9秒前
lucas发布了新的文献求助10
10秒前
我爱陶子完成签到 ,获得积分10
12秒前
李健应助谢尔顿采纳,获得10
13秒前
tx完成签到,获得积分10
14秒前
在荔栀阿发布了新的文献求助10
15秒前
大大怪完成签到,获得积分10
15秒前
YAYA完成签到,获得积分10
17秒前
19秒前
开放的绮琴应助张文静采纳,获得10
22秒前
怡然的扬发布了新的文献求助10
22秒前
22秒前
朴实的母鸡完成签到 ,获得积分10
23秒前
谷雨秋发布了新的文献求助10
23秒前
ding应助在荔栀阿采纳,获得10
24秒前
29秒前
30秒前
纯真万言发布了新的文献求助10
30秒前
谢尔顿发布了新的文献求助10
33秒前
桐桐应助tx采纳,获得10
33秒前
34秒前
默默善愁发布了新的文献求助10
37秒前
40秒前
40秒前
事竟成完成签到 ,获得积分10
44秒前
情怀应助朝阳满意采纳,获得10
47秒前
科研通AI6应助cfyoung采纳,获得10
48秒前
wanci应助怡然的扬采纳,获得10
49秒前
小蘑菇应助lucas采纳,获得10
49秒前
52秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645739
关于积分的说明 14675964
捐赠科研通 4586856
什么是DOI,文献DOI怎么找? 2516606
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461039