亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantitative tooth crowding analysis in occlusal intra-oral photographs using a convolutional neural network.

卷积神经网络 拥挤 牙科 口腔正畸科 医学 计算机科学 人工智能 心理学 神经科学
作者
Gabriel Hertig,Niels van Nistelrooij,Jan G.J.H. Schols,Tong Xi,Shankeeth Vinayahalingam,Raphael Patcas
出处
期刊:PubMed 卷期号:47 (3)
标识
DOI:10.1093/ejo/cjaf025
摘要

Dental crowding is a primary concern in orthodontic treatment and significantly impacts therapy choices. Accurate quantification of crowding requires time-intensive cast- or scan-based measurements. The aim was to develop an automated deep-learning model capable of assessing anterior crowding and calculating the Little Irregularity Index using single occlusal intra-oral photographs. A dataset of 125 untreated individuals (100 from Zurich, Switzerland, and 25 from Nijmegen, the Netherlands) comprised of annotated intra-oral scans and corresponding intra-oral photographs were used to train a dedicated convolutional neural network (CNN). The CNN was modeled to detect teeth boundaries, contact points and contact point displacements on photographs. The model's performance to determine anterior crowding and the Little Irregularity Index score was compared to consensus measurements based on intra-oral scans in terms of intra-class correlation (ICC) and mean absolute difference (MAD). The model correlated well with the consensus measurement, and proved to be reliable (ICC = 0.900) and accurate (MAD = 0.36 mm) for anterior crowding assessment and Little Irregularity Index alike (ICC = 0.930; MAD = 0.74 mm). The model was not trained on cases with interdental spacing, and its reliability for cases with crowding severity outside the tested sample has not been established. The presented CNN-based model was able to quantify the crowding in the anterior segment of the lower dental arch and score the Little Irregularity Index from a single intra-oral photograph with a satisfactory reliability and accuracy. Application of this model may lead to more efficient and convenient orthodontic diagnostics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
24秒前
44秒前
49秒前
51秒前
panpanda发布了新的文献求助10
54秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
天天快乐应助科研通管家采纳,获得10
56秒前
量子星尘发布了新的文献求助10
1分钟前
panpanda完成签到,获得积分10
1分钟前
vitamin完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
开放素完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
wen完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Nan关闭了Nan文献求助
3分钟前
3分钟前
Nan关闭了Nan文献求助
3分钟前
淡然宛凝完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Nan发布了新的文献求助30
3分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
ll完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
我是老大应助QingSun1采纳,获得10
6分钟前
6分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885841
求助须知:如何正确求助?哪些是违规求助? 3427882
关于积分的说明 10757130
捐赠科研通 3152724
什么是DOI,文献DOI怎么找? 1740605
邀请新用户注册赠送积分活动 840305
科研通“疑难数据库(出版商)”最低求助积分说明 785304