Discovery and Validation of a New Biomarker Integrating Ferroptosis and Glycolysis‐Related Genes in Bladder Cancer

转录组 癌变 厌氧糖酵解 生物 癌症研究 癌细胞 膀胱癌 糖酵解 基因 癌症 计算生物学 基因表达 遗传学 生物化学 新陈代谢
作者
Chenyang Wang,Yamin Shu,Jiaqi Shan,Kunpeng Li,Shun Wan,Siyu Chen,Xiaoran Li,Jiaxin Niu,Li Yang
出处
期刊:Iubmb Life [Wiley]
卷期号:77 (5)
标识
DOI:10.1002/iub.70028
摘要

ABSTRACT Bladder cancer (BCa) is a highly invasive tumor with few successful therapies, and its unfavorable prognosis mainly stems from late diagnosis and resistance to treatment. Ferroptosis is a type of non‐apoptotic cell death characterized by iron‐dependent regulated necrosis due to extensive lipid peroxidation. Glycolysis is fundamental to cancer cell metabolism, with cancer cells developing various strategies to enhance this process. In this study, we combined ferroptosis and glycolysis gene sets, two biological processes closely related to tumorigenesis and development, and obtained ferroptosis and glycolysis‐related gene sets (FGRGs). By leveraging both single‐cell and bulk transcriptome data from BCa, we have investigated the presence and role of FGRGs in the onset and progression of BCa through various approaches. Using machine learning algorithms, we identified a feature gene set consisting of 13 genes in the TCGA data set to predict the prognosis of BCa and verified it in the GEO data set. After that, we explored FGRGs in depth using a variety of bioinformatics analyses, such as mutational landscape analysis, functional enrichment analysis, immune infiltration analysis, FGRGs‐associated risk and clinical characterization, and drug susceptibility analysis. Finally, we validated the function of the core gene chondroitin polymerizing factor 2 (CHPF2) using CCK‐8, clone formation, transwell, and wound healing assays. Our research innovatively combines ferroptosis with glycolytic genes and applies it as an independent prognostic factor in the study of BCa. It reveals new characteristic genes and therapeutic targets that can predict the prognosis of BCa patients and lays a foundation for the study of the occurrence and development mechanism of BCa and targeted data strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助奔腾小马采纳,获得10
1秒前
木青仙子完成签到,获得积分10
1秒前
lulala完成签到,获得积分10
1秒前
zmk发布了新的文献求助30
1秒前
3秒前
科研通AI5应助Alpha采纳,获得10
3秒前
5秒前
5秒前
111完成签到,获得积分20
6秒前
Ava应助Lynn采纳,获得10
6秒前
6秒前
7秒前
8秒前
9秒前
wy发布了新的文献求助60
9秒前
疯狂的鸣凤完成签到,获得积分10
10秒前
10秒前
xiaoyan发布了新的文献求助10
11秒前
活在当下发布了新的文献求助10
12秒前
JamesPei应助lulala采纳,获得10
12秒前
科研通AI5应助火星上念梦采纳,获得10
13秒前
echo发布了新的文献求助10
13秒前
echo发布了新的文献求助10
13秒前
阔达的以丹完成签到,获得积分10
14秒前
科研通AI5应助jiang采纳,获得10
15秒前
科研通AI5应助沉静的向秋采纳,获得10
16秒前
dandada关注了科研通微信公众号
16秒前
宇森完成签到,获得积分10
16秒前
17秒前
18秒前
emilyhobby发布了新的文献求助30
18秒前
18秒前
19秒前
19秒前
活在当下完成签到,获得积分10
20秒前
20秒前
甜美鱼发布了新的文献求助10
20秒前
白桦发布了新的文献求助10
20秒前
18524407273完成签到,获得积分10
21秒前
shuyu完成签到 ,获得积分10
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4195764
求助须知:如何正确求助?哪些是违规求助? 3731392
关于积分的说明 11751874
捐赠科研通 3406045
什么是DOI,文献DOI怎么找? 1868742
邀请新用户注册赠送积分活动 924975
科研通“疑难数据库(出版商)”最低求助积分说明 835549