Diagnosis assistant for liver cancer utilizing a large language model with three types of knowledge

分割 肝癌 计算机科学 过程(计算) 癌症 医学影像学 人工智能 医学物理学 医学 放射科 内科学 操作系统
作者
Xuzhou Wu,Guangxin Li,Xing Wang,Z.Z. Xu,Yingni Wang,Siyuan Lei,Jianming Xian,Xueyu Wang,Yibao Zhang,Li Gong,Kehong Yuan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:70 (9): 095009-095009
标识
DOI:10.1088/1361-6560/adcb17
摘要

Abstract Objective. Liver cancer has a high incidence rate, but experienced doctors are lacking in primary healthcare settings. The development of large models offers new possibilities for diagnosis. However, in liver cancer diagnosis, large models face certain limitations, such as insufficient understanding of specific medical images, inadequate consideration of liver vessel factors, and inaccuracies in reasoning logic. Therefore, this study proposes a diagnostic assistance tool specific to liver cancer to enhance the diagnostic capabilities of primary care doctors. Approach. A liver cancer diagnosis framework combining large and small models is proposed. A more accurate model for liver tumor segmentation and a more precise model for liver vessel segmentation are developed. The features extracted from the segmentation results of the small models are combined with the patient’s medical records and then provided to the large model. The large model employs chain of thought prompts to simulate expert diagnostic reasoning and uses Retrieval-Augmented Generation to provide reliable answers based on trusted medical knowledge and cases. Main results. In the small model part, the proposed liver tumor and liver vessel segmentation methods achieve improved performance. In the large model part, this approach receives higher evaluation scores from doctors when analyzing patient imaging and medical records. Significance. First, a diagnostic framework combining small models and large models is proposed to optimize the liver cancer diagnosis process. Second, two segmentation models are introduced to compensate for the large model’s shortcomings in extracting semantic information from images. Third, by simulating doctors’ reasoning and integrating trusted knowledge, the framework enhances the reliability and interpretability of the large model’s responses while reducing hallucination phenomena.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzy完成签到,获得积分10
刚刚
Qinqinasm完成签到,获得积分10
1秒前
追寻紫安发布了新的文献求助10
1秒前
水木年华发布了新的文献求助10
1秒前
Yolo发布了新的文献求助10
3秒前
张啦啦发布了新的文献求助10
3秒前
3秒前
3秒前
Lucas应助吱嗷采纳,获得10
3秒前
太渊完成签到 ,获得积分10
3秒前
传奇3应助真实的小霜采纳,获得10
4秒前
含糊的小土豆完成签到,获得积分10
4秒前
李先生完成签到 ,获得积分10
4秒前
骄傲的牛奶瓶完成签到,获得积分10
4秒前
star完成签到,获得积分10
5秒前
5秒前
1号完成签到 ,获得积分10
6秒前
斯文败类应助willowyololyx采纳,获得10
7秒前
7秒前
淡定的千易完成签到,获得积分10
9秒前
小小平完成签到,获得积分10
9秒前
9秒前
李健应助guozizi采纳,获得10
10秒前
务觅发布了新的文献求助10
11秒前
12秒前
JamesPei应助leeyh采纳,获得10
12秒前
Orange应助张啦啦采纳,获得10
12秒前
CipherSage应助R语言采纳,获得10
13秒前
ZL完成签到,获得积分10
13秒前
13秒前
执着的访卉完成签到,获得积分20
13秒前
13秒前
Ava应助小火花采纳,获得10
14秒前
phoenix完成签到,获得积分10
14秒前
元谷雪发布了新的文献求助20
15秒前
15秒前
小酒窝周周完成签到 ,获得积分10
16秒前
无花果应助呆萌的傲之采纳,获得10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5678745
求助须知:如何正确求助?哪些是违规求助? 4984392
关于积分的说明 15165526
捐赠科研通 4838563
什么是DOI,文献DOI怎么找? 2592579
邀请新用户注册赠送积分活动 1545849
关于科研通互助平台的介绍 1503995