清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Diagnosis assistant for liver cancer utilizing a large language model with three types of knowledge

分割 肝癌 计算机科学 过程(计算) 癌症 医学影像学 人工智能 医学物理学 医学 放射科 内科学 操作系统
作者
Xuzhou Wu,Guangxin Li,Xing Wang,Z.Z. Xu,Yingni Wang,Siyuan Lei,Jianming Xian,Xueyu Wang,Yibao Zhang,Li Gong,Kehong Yuan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/adcb17
摘要

Abstract Objective 
Liver cancer has a high incidence rate, but experienced doctors are lacking in primary healthcare settings. The development of large models offers new possibilities for diagnosis. However, in liver cancer diagnosis, large models face certain limitations, such as insufficient understanding of specific medical images, inadequate consideration of liver vessel factors, and inaccuracies in reasoning logic. Therefore, this study proposes a diagnostic assistance tool specific to liver cancer to enhance the diagnostic capabilities of primary care doctors.

Approach
A liver cancer diagnosis framework combining large and small models is proposed. A more accurate model for liver tumor segmentation and a more precise model for liver vessel segmentation are developed. The features extracted from the segmentation results of the small models are combined with the patient's medical records and then provided to the large model. The large model employs Chain of Thought (COT) prompts to simulate expert diagnostic reasoning and uses Retrieval-Augmented Generation (RAG) to provide reliable answers based on trusted medical knowledge and cases.

Main results
In the small model part, the proposed liver tumor and liver vessel segmentation methods achieve improved performance. In the large model part, this approach receives higher evaluation scores from doctors when analyzing patient imaging and medical records.

Significance
First, a diagnostic framework combining small models and large models is proposed to optimize the liver cancer diagnosis process. Second, two segmentation models are introduced to compensate for the large model’s shortcomings in extracting semantic information from images. Third, by simulating doctors' reasoning and integrating trusted knowledge, the framework enhances the reliability and interpretability of the large model’s responses while reducing hallucination phenomena.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西山菩提完成签到,获得积分10
2秒前
lin123完成签到 ,获得积分10
8秒前
16秒前
Tracy发布了新的文献求助10
23秒前
29秒前
dyk发布了新的文献求助10
34秒前
李爱国应助Tracy采纳,获得10
36秒前
薛家泰完成签到 ,获得积分10
1分钟前
1分钟前
Tracy发布了新的文献求助10
1分钟前
烟花应助Tracy采纳,获得10
1分钟前
qin202569完成签到,获得积分10
1分钟前
2分钟前
hwj524发布了新的文献求助10
2分钟前
合不着完成签到 ,获得积分10
2分钟前
Aaron完成签到 ,获得积分10
2分钟前
3分钟前
zhizhi发布了新的文献求助10
3分钟前
3分钟前
Tracy发布了新的文献求助10
3分钟前
领导范儿应助zhizhi采纳,获得10
3分钟前
小二郎应助Tracy采纳,获得10
3分钟前
zhizhi完成签到,获得积分10
3分钟前
披着羊皮的狼完成签到 ,获得积分10
3分钟前
一天完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
lutos发布了新的文献求助10
4分钟前
4分钟前
Tracy发布了新的文献求助10
4分钟前
搜集达人应助Tracy采纳,获得10
4分钟前
糟糕的翅膀完成签到,获得积分10
5分钟前
忘忧Aquarius完成签到,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
L77完成签到,获得积分10
5分钟前
5分钟前
Tracy完成签到,获得积分10
5分钟前
Tracy发布了新的文献求助10
5分钟前
CipherSage应助yux采纳,获得10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Effects of different anesthesia methods on bleeding and prognosis in endoscopic sinus surgery: a meta-analysis and systematic review of randomized controlled trials 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4844914
求助须知:如何正确求助?哪些是违规求助? 4145046
关于积分的说明 12833946
捐赠科研通 3891777
什么是DOI,文献DOI怎么找? 2139298
邀请新用户注册赠送积分活动 1159304
关于科研通互助平台的介绍 1059917