Proofreading and single-molecule sensitivity in T cell receptor signaling by condensate nucleation

T细胞受体 成核 生物物理学 校对 化学 细胞生物学 信号转导 动力学 表位 受体 合作性 生物 抗原 T细胞 生物化学 物理 免疫学 聚合酶 免疫系统 有机化学 量子力学
作者
William L. White,Hailemikael K. Yirdaw,Ariel J. Ben‐Sasson,Jay T. Groves,David Baker,Hao Yuan Kueh
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (22)
标识
DOI:10.1073/pnas.2422787122
摘要

T cells display the remarkable ability to detect single foreign peptides displayed on target cells, while ignoring highly abundant self-peptides. This selectivity has been explained by kinetic proofreading in the T cell receptor (TCR) signaling pathway, which prevents responses to short-lived binding events regardless of their abundance. However, the biochemical mechanisms that drive kinetic proofreading have remained unclear. Here, using computational modeling, we show that these key signaling properties of the TCR pathway can emerge from the dynamics of linker for activation of T cells (LAT) phosphorylation, diffusion, and condensation following TCR–peptide major histocompatibility complex (pMHC) binding. In this model, time delays in LAT condensate nucleation underlie kinetic proofreading, enabling selective signaling responses to high-affinity pMHC ligands. The cooperativity in the nucleation and growth of LAT condensates also provides a mechanism to amplify weak signals from single high-affinity peptides and for condensates to grow with increasing antigen numbers. In contrast to other models, condensate-nucleation proofreading predicts a dependence of signal strength on pMHC spacing at fixed number, a prediction we validated experimentally using a protein scaffold to present pMHCs at defined intervals. Our results suggest that nucleation-condensation proofreading underlies the remarkable antigen detection capabilities of the TCR signaling pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助李雩采纳,获得10
2秒前
Steplan完成签到 ,获得积分10
2秒前
5秒前
5秒前
羊六一发布了新的文献求助20
6秒前
完美世界应助斯文的芹菜采纳,获得30
6秒前
xiaixax完成签到,获得积分10
8秒前
Phonyeee发布了新的文献求助10
8秒前
进取拼搏完成签到,获得积分10
9秒前
checkinging发布了新的文献求助10
9秒前
ss发布了新的文献求助10
11秒前
One应助孙悟空大巨人采纳,获得10
11秒前
11秒前
蔡榕应助wzjs采纳,获得10
13秒前
三毛变相完成签到,获得积分10
14秒前
15秒前
16秒前
SciGPT应助ss采纳,获得10
17秒前
18秒前
18秒前
yiyu应助xiong采纳,获得10
19秒前
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
Marciu33完成签到,获得积分10
22秒前
lucky发布了新的文献求助10
23秒前
诸仰发布了新的文献求助10
23秒前
checkinging完成签到,获得积分10
23秒前
田様应助xgz采纳,获得10
25秒前
25秒前
26秒前
Orange应助shanshan采纳,获得30
27秒前
Phonyeee完成签到,获得积分10
28秒前
斯文败类应助科研小菜鸟采纳,获得10
29秒前
30秒前
orixero应助心灵美孤菱采纳,获得10
31秒前
Pupil完成签到,获得积分20
31秒前
zjb关闭了zjb文献求助
31秒前
xue完成签到,获得积分10
32秒前
33秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
The User Experience Team of One (2nd Edition) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881028
求助须知:如何正确求助?哪些是违规求助? 3423325
关于积分的说明 10734109
捐赠科研通 3148405
什么是DOI,文献DOI怎么找? 1737049
邀请新用户注册赠送积分活动 838603
科研通“疑难数据库(出版商)”最低求助积分说明 784036