已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

VTrans: A VAE-Based Pre-Trained Transformer Method for Microbiome Data Analysis

微生物群 计算机科学 计算生物学 人工智能 数据挖掘 生物 生物信息学
作者
Xinyuan Shi,Fangfang Zhu,Wenwen Min
出处
期刊:Journal of Computational Biology [Mary Ann Liebert, Inc.]
标识
DOI:10.1089/cmb.2024.0884
摘要

Predicting the survival outcomes and assessing the risk of patients play a pivotal role in comprehending the microbial composition across various stages of cancer. With the ongoing advancements in deep learning, it has been substantiated that deep learning holds the potential to analyze patient survival risks based on microbial data. However, confronting a common challenge in individual cancer datasets involves the limited sample size and the high dimensionality of the feature space. This predicament often leads to overfitting issues in deep learning models, hindering their ability to effectively extract profound data representations and resulting in suboptimal model performance. To overcome these challenges, we advocate the utilization of pretraining and fine-tuning strategies, which have proven effective in addressing the constraint of having a smaller sample size in individual cancer datasets. In this study, we propose a deep learning model that amalgamates Transformer encoder and variational autoencoder (VAE), VTrans, employing both pre-training and fine-tuning strategies to predict the survival risk of cancer patients using microbial data. Furthermore, we highlight the potential of extending VTrans to integrate microbial multi-omics data. Our method is assessed on three distinct cancer datasets from The Cancer Genome Atlas Program, and the research findings demonstrated that (1) VTrans excels in terms of performance compared to conventional machine learning and other deep learning models. (2) The utilization of pretraning significantly enhances its performance. (3) In contrast to positional encoding, employing VAE encoding proves to be more effective in enriching data representation. (4) Using the idea of saliency map, it is possible to observe which microbes have a high contribution to the classification results. These results demonstrate the effectiveness of VTrans in prediting patient survival risk. Source code and all datasets used in this paper are available at https://github.com/wenwenmin/VTrans and https://doi.org/10.5281/zenodo.14166580.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
修管子完成签到 ,获得积分10
1秒前
小星星发布了新的文献求助10
4秒前
小天使海蒂完成签到 ,获得积分10
4秒前
斯文钢笔完成签到 ,获得积分10
5秒前
CuvJ发布了新的文献求助40
5秒前
8秒前
卡卡咧咧完成签到,获得积分10
9秒前
12秒前
潇洒清炎发布了新的文献求助10
13秒前
小星星完成签到,获得积分10
14秒前
星辰大海应助李李李采纳,获得10
19秒前
梯坎完成签到 ,获得积分10
20秒前
luanzhaohui完成签到,获得积分10
25秒前
科研通AI2S应助Rosin采纳,获得10
25秒前
25秒前
杨东旭关注了科研通微信公众号
25秒前
正直的帅哥完成签到,获得积分10
27秒前
28秒前
犹豫曲奇完成签到 ,获得积分10
28秒前
希望天下0贩的0应助XP采纳,获得10
29秒前
今后应助年轻砖头采纳,获得10
31秒前
朱佳宁完成签到 ,获得积分10
32秒前
海陵吹风鸡完成签到,获得积分10
32秒前
33秒前
33秒前
赵坤煊发布了新的文献求助10
36秒前
沉静绮彤发布了新的文献求助10
36秒前
梨花雨凉1993完成签到,获得积分10
37秒前
39秒前
40秒前
忧心的闭月完成签到,获得积分10
40秒前
996755发布了新的文献求助10
42秒前
45秒前
XP发布了新的文献求助10
45秒前
46秒前
46秒前
48秒前
传奇3应助雯雯采纳,获得10
48秒前
化学之星完成签到,获得积分10
50秒前
大橘发布了新的文献求助10
50秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787853
求助须知:如何正确求助?哪些是违规求助? 3333506
关于积分的说明 10262045
捐赠科研通 3049268
什么是DOI,文献DOI怎么找? 1673469
邀请新用户注册赠送积分活动 801965
科研通“疑难数据库(出版商)”最低求助积分说明 760440