Reduction of Acquisition Time in Fourier Transform Infrared Spectral Imaging by Deep Learning for Clinical Applications

化学 还原(数学) 傅里叶变换 红外线的 傅里叶变换红外光谱 傅里叶变换光谱学 人工智能 红外光谱学 光学 有机化学 几何学 数学 计算机科学 物理 数学分析
作者
S. Kane,Vincent Vuiblet,Cyril Gobinet
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (12): 6600-6610 被引量:2
标识
DOI:10.1021/acs.analchem.4c06317
摘要

In infrared Fourier transform spectral imaging applied to biomedical challenges, data quality is of primary importance to achieving clinical objectives. However, different noise sources affect the infrared signal coming from the sample. Generally, the number of scans per pixel is fixed to a high value in order to ensure a high signal-to-noise ratio. However, the higher the number of scans, the higher the acquisition time, which may be incompatible with clinical practice. The objective of this work is therefore to use deep learning techniques to efficiently reconstruct high-quality infrared images from poor-quality ones due to the short acquisition time on formalin-fixed paraffin-embedded tissue sections coming from renal graft recipients. From paired 1-scan (acquisition time of 0.062 s per pixel with a Spotlight 400, PerkinElmer) and 64-scan (acquisition time of 4 s per pixel with a Spotlight 400, PerkinElmer) infrared images, two deep learning architectures (autoencoder and ResUNet) and three different layer types (multilayer perceptron, 1D-CNN and 2D-CNN) were evaluated for different preprocessing steps of the 64-scan reference images. Results demonstrate that the combined application of atmospheric correction and EMSC preprocessing had a significant impact on the denoising performance of the models. Furthermore, ResUNet architecture combined with 1D-CNN is able to reconstruct high-quality infrared images from poor ones with high fidelity while saving over 95% of the acquisition time. Additional experiments show that from a histopathological point of view, the reconstructed images are approximately equivalent to 16-scan images. This work thus makes short acquisition time of infrared images compatible with high-quality data and a clinical routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助沙漏采纳,获得10
2秒前
酒吧舞男茜茜妈完成签到,获得积分10
3秒前
小豹子发布了新的文献求助30
3秒前
Gamera完成签到 ,获得积分10
3秒前
英吉利25发布了新的文献求助20
4秒前
爱学数学的数学小白完成签到,获得积分10
4秒前
竹本完成签到 ,获得积分10
7秒前
1111完成签到,获得积分10
9秒前
嘎嘎嘎发布了新的文献求助10
10秒前
椰子完成签到,获得积分10
11秒前
小G完成签到 ,获得积分10
14秒前
文艺代灵完成签到,获得积分10
15秒前
小马甲应助Innogen采纳,获得10
16秒前
17秒前
上善若水发布了新的文献求助10
18秒前
磨磨完成签到,获得积分10
22秒前
嘎嘎嘎完成签到,获得积分20
22秒前
22秒前
wdchenaic发布了新的文献求助10
28秒前
Messi发布了新的文献求助10
30秒前
liwenqiang发布了新的文献求助10
33秒前
雪海完成签到,获得积分10
34秒前
共享精神应助务实的凝天采纳,获得10
34秒前
40秒前
整齐的凝珍完成签到,获得积分10
43秒前
田様应助wonder123采纳,获得10
45秒前
飞飞完成签到,获得积分10
45秒前
48秒前
48秒前
辛勤问晴完成签到,获得积分10
49秒前
沙漏发布了新的文献求助10
51秒前
51秒前
52秒前
英俊的铭应助整齐的凝珍采纳,获得10
54秒前
微笑的丑发布了新的文献求助10
54秒前
谢大喵发布了新的文献求助10
56秒前
lysenko完成签到 ,获得积分10
1分钟前
西格玛完成签到,获得积分10
1分钟前
温婉的谷菱完成签到,获得积分10
1分钟前
cfyoung发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560365
求助须知:如何正确求助?哪些是违规求助? 4645513
关于积分的说明 14675355
捐赠科研通 4586641
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951