MemATr: An Efficient and Lightweight Memory-augmented Transformer for Video Anomaly Detection

异常检测 变压器 计算机科学 嵌入式系统 人工智能 电气工程 工程类 电压
作者
Jingjing Chang,Peining Zhen,Xiaotao Yan,Yixin Yang,Ziyang Gao,Hai‐Bao Chen
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
标识
DOI:10.1145/3719203
摘要

Anomaly detection in videos is a long-standing and challenging problem. Previous methods often adopt deep and large neural networks to achieve the best detection accuracy; however, the high computational costs prevent them from being used in real-world applications with constrained computational resources. In this paper, we develop a mem ory- a ugmented tr ansformer named MemATr, which is capable of detecting video anomalies effectively. The proposed network is lightweight and can be easily deployed on mobile devices. Furthermore, we propose a memory transformer module to make predictions that are closer to normal inputs, thereby leading to a higher error for abnormal input patterns. Memory-attention is the main component of the proposed memory transformer, which can retrieve the features from learnable values rather than from the backbone like previous methods. Extensive experiments on the UCSD Ped2, CUHK Avenue, and ShanghaiTech benchmarks can demonstrate that our model has a significantly smaller model size while still achieving competitive detection accuracy. Our model has only 1/12 the number of parameters of the baseline model. Besides, our model achieves a 4.6% increase in accuracy on the ShanghaiTech dataset and has roughly the same accuracy compared with the baseline on the other two datasets. We validate the performance of the proposed model on the mobile device and the result shows it only has 49.8ms latency. The effectiveness of the proposed method on mobile devices is further supported by experimental results. A new quantitative parameter AMD (Applicability for Mobile Devices) is proposed to offer a novel approach to assist in making trade-offs for mobile devices. The proposed model obtains state-of-the-art results in terms of AMD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃发布了新的文献求助10
刚刚
科研通AI5应助落后的枕头采纳,获得10
刚刚
mml发布了新的文献求助10
1秒前
小十一完成签到 ,获得积分10
1秒前
1秒前
2秒前
SciGPT应助梅雨季来信采纳,获得10
3秒前
小竹笋发布了新的文献求助10
4秒前
5秒前
晚安关注了科研通微信公众号
5秒前
6秒前
Slow发布了新的文献求助10
6秒前
万宁发布了新的文献求助10
6秒前
adds发布了新的文献求助10
7秒前
内向映天完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
阿白头发多多完成签到,获得积分10
10秒前
11秒前
李白完成签到,获得积分10
11秒前
11秒前
Popeye完成签到,获得积分10
11秒前
12秒前
科研狗发布了新的文献求助10
14秒前
14秒前
SciGPT应助宝宝巴士采纳,获得10
14秒前
14秒前
adds完成签到,获得积分10
14秒前
高伟杰完成签到,获得积分10
15秒前
15秒前
枫叶的脚步关注了科研通微信公众号
15秒前
16秒前
科研通AI5应助万宁采纳,获得10
16秒前
17秒前
QiongYin_123完成签到 ,获得积分10
18秒前
AnasYusuf完成签到,获得积分10
18秒前
敏感初露发布了新的文献求助10
20秒前
21秒前
晚安发布了新的文献求助10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814939
求助须知:如何正确求助?哪些是违规求助? 3358987
关于积分的说明 10399369
捐赠科研通 3076561
什么是DOI,文献DOI怎么找? 1689868
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608