An Analytic Review on Stock Market Price Prediction using Machine Learning and Deep Learning Techniques

人工智能 计算机科学 机器学习 股票价格 股票市场 计量经济学 经济 地理 地质学 系列(地层学) 古生物学 考古 背景(考古学)
作者
Swarnalata Rath,Nilima R. Das,Binod Kumar Pattanayak
出处
期刊:Recent Patents on Engineering [Bentham Science]
卷期号:18 (2) 被引量:9
标识
DOI:10.2174/1872212118666230303154251
摘要

: Anticipating stock market trends is a challenging endeavor that requires a lot of attention because correctly predicting stock prices can lead to significant rewards if the right judgments are made. Due to non-stationary, loud, and chaotic data, stock market prediction is challenging. Investors need help to forecast where they should spend their money to make a profit. Investment methods in the stock market are intricate and based on the analysis of large datasets. Expert analysts and investors have placed a high value on developments in stock price prediction. Due to intrinsically noisy settings and increased volatility concerning market trends, the stock market forecast for assessing trends is tricky. The intricacies of stock prices are influenced by several elements, including quarterly earnings releases, market news, and other altering habits. Traders use a number of technical indicators based on stocks that are collected on a daily basis to make decisions. Even though these indicators are used to analyze stock returns, predicting daily, and weekly market patterns are difficult. Machine learning techniques have been extensively studied in recent years to see if they might boost market predictions compared to legacy or conventional methods. The existing methodologies have devised several strategies for predicting stock market trends. Various machine learning and deep learning algorithms, such as SVM, DT, LR, NN, kNN, ANN, and CNN, can boost performance in predicting the stock market. Based on a survey of current literature, this work aims to identify future directions for machine learning stock market prediction research. This research aims to provide a systematic literature review process to discover relevant peer-reviewed journal papers from the last two decades and classify studies with similar methods and situations into the machine learning approach and deep learning. In the current article, the methods and the performance of those adopted methods will be identified for measuring the effectiveness of those techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
活泼半凡发布了新的文献求助10
2秒前
2秒前
於依白完成签到,获得积分10
3秒前
ang完成签到,获得积分10
3秒前
huhu发布了新的文献求助10
3秒前
3秒前
随风完成签到,获得积分0
3秒前
王金娥完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
顾矜应助夏侯初采纳,获得10
4秒前
舒屿望迷发布了新的文献求助10
4秒前
科视发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
支山柳发布了新的文献求助10
7秒前
hfnnn发布了新的文献求助30
8秒前
先点菜吧完成签到,获得积分10
9秒前
wanci应助咿呀采纳,获得10
10秒前
搜集达人应助自然白安采纳,获得10
10秒前
金金完成签到 ,获得积分10
11秒前
糟糕的颜完成签到 ,获得积分10
11秒前
11秒前
大个应助tree薯要吃麦麦采纳,获得10
12秒前
朴素鸽子完成签到,获得积分10
12秒前
小韩完成签到,获得积分10
13秒前
桐桐应助徐个愿吧采纳,获得30
13秒前
卡萨卡萨完成签到,获得积分10
13秒前
13秒前
xxdn完成签到,获得积分10
14秒前
糟糕的颜关注了科研通微信公众号
14秒前
yuedingta应助Tom的梦想采纳,获得10
15秒前
天才瞳瞳完成签到 ,获得积分10
15秒前
15秒前
二艺完成签到,获得积分10
16秒前
我是老大应助朴素鸽子采纳,获得10
16秒前
CJY111关注了科研通微信公众号
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
一國兩制與國家安全 : 香港國安法透視 350
Understanding Jurisprudence: An Introduction to Legal Theory (6th edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4272902
求助须知:如何正确求助?哪些是违规求助? 3802592
关于积分的说明 11916229
捐赠科研通 3449317
什么是DOI,文献DOI怎么找? 1891697
邀请新用户注册赠送积分活动 942394
科研通“疑难数据库(出版商)”最低求助积分说明 846301