Applications of AI in Cardiovascular Disease Detection — A Review of the Specific Ways in which AI Is Being Used to Detect and Diagnose Cardiovascular Diseases

计算机科学 人工智能 机器学习 深度学习 卷积神经网络 学习迁移 模式 稳健性(进化) 过程(计算) 数据科学 社会科学 生物化学 化学 社会学 基因 操作系统
作者
Satish Srinivasan,Vinod Sharma
标识
DOI:10.1002/9781394278695.ch6
摘要

The mixing of superior deep learning strategies has profoundly impacted the sector of disease detection, promising sizable advancements in diagnostic accuracy and performance. This chapter explores the utilization of multiscale convolutional layers, interest mechanisms, switch learning, generative adversarial networks (GANs), and self-supervised learning in the healthcare domain. These techniques collectively beautify the capability of convolutional neural networks (CNNs) to discover and diagnose diseases from medical images with extraordinary precision. Multiscale convolutional layers allow the models to capture features at numerous scales, improving the sensitivity and specificity of disease detection, mainly in situations like most cancers. Attention mechanisms similarly refine this process by allowing models to focus on the most applicable components of a medical image, mirroring the meticulous examination by human healthcare professionals. Transfer learning, leveraging pretrained models, extensively reduces the reliance on large, categorized datasets, thereby expediting the development process and enhancing version accuracy. This approach has shown outstanding success throughout distinctive imaging modalities, from X-rays to CT scans, improving the adaptability and robustness of diagnostic models. GANs contribute via producing artificial records to augment training datasets, addressing the challenge of limited data availability and enhancing model performance, specifically in rare disease scenarios. Self-supervised learning, which trains models on unlabeled records via proxy duties, has demonstrated comparable performance to fully supervised models while requiring fewer categorized samples, therefore lowering the need for costly and time-consuming data annotation. Innovations in those regions are no longer the handiest improvements the technical overall performance of disease detection models but additionally open new avenues for their application. Future studies instructions consist of the exploration of multi-modal learning, which mixes data from various assets including genomic information and digital health data, imparting a more complete diagnostic perspective. The implementation of federated learning guarantees data privacy while enhancing version training via decentralized records assets. Explainable AI (XAI) techniques enhance version interpretability, fostering extra consideration and popularity amongst healthcare professionals. Moreover, the integration of AI with wearable devices for continuous fitness tracking and the improvement of real-time adaptive learning models hold tremendous promise for revolutionizing patient care and disease control. This comprehensive method for leveraging superior deep learning methodologies in disease identification underscores the transformative potential of AI in healthcare. With the aid of addressing modern-day demanding situations and exploring progressive answers, we can pave the way for greater accurate, efficient, and personalized diagnostic systems, in the end enhancing patient results and advancing the same old of care in medical exercise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助wu采纳,获得10
1秒前
彪壮的三问完成签到,获得积分10
3秒前
鲜于冰彤完成签到,获得积分10
3秒前
聆琳完成签到 ,获得积分10
5秒前
6秒前
浪迹天涯完成签到 ,获得积分10
7秒前
Malmever发布了新的文献求助10
7秒前
7秒前
顾矜应助Alex采纳,获得10
7秒前
9秒前
任世界灯火阑珊完成签到,获得积分10
9秒前
啊啊啊完成签到 ,获得积分10
10秒前
13秒前
Lululu完成签到,获得积分10
14秒前
14秒前
14秒前
幸福大白发布了新的文献求助10
15秒前
15秒前
16秒前
酷酷翅膀发布了新的文献求助10
16秒前
17秒前
飘逸凌蝶发布了新的文献求助10
17秒前
18秒前
Jacky应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
JamesPei应助欢呼的访枫采纳,获得10
18秒前
老肖应助科研通管家采纳,获得10
18秒前
大模型应助cs采纳,获得10
18秒前
老肖应助科研通管家采纳,获得10
18秒前
18秒前
浮游应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
18秒前
1111111111应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4777058
求助须知:如何正确求助?哪些是违规求助? 4108684
关于积分的说明 12709724
捐赠科研通 3830269
什么是DOI,文献DOI怎么找? 2112776
邀请新用户注册赠送积分活动 1136565
关于科研通互助平台的介绍 1020453