Assessing the readability, quality and reliability of responses produced by ChatGPT, Gemini, and Perplexity regarding most frequently asked keywords about low back pain

可读性 困惑 医学 可靠性(半导体) 质量得分 质量(理念) 人气 计算器 计算机科学 人工智能 公制(单位) 心理学 语言模型 程序设计语言 功率(物理) 经济 哲学 物理 操作系统 认识论 社会心理学 量子力学 运营管理
作者
Erkan Özduran,Volkan Hancı,Yüksel Erkin,İlhan Celil Özbek,Vugar Abdulkerimov
出处
期刊:PeerJ [PeerJ]
卷期号:13: e18847-e18847 被引量:14
标识
DOI:10.7717/peerj.18847
摘要

Background Patients who are informed about the causes, pathophysiology, treatment and prevention of a disease are better able to participate in treatment procedures in the event of illness. Artificial intelligence (AI), which has gained popularity in recent years, is defined as the study of algorithms that provide machines with the ability to reason and perform cognitive functions, including object and word recognition, problem solving and decision making. This study aimed to examine the readability, reliability and quality of responses to frequently asked keywords about low back pain (LBP) given by three different AI-based chatbots (ChatGPT, Perplexity and Gemini), which are popular applications in online information presentation today. Methods All three AI chatbots were asked the 25 most frequently used keywords related to LBP determined with the help of Google Trend. In order to prevent possible bias that could be created by the sequential processing of keywords in the answers given by the chatbots, the study was designed by providing input from different users (EO, VH) for each keyword. The readability of the responses given was determined with the Simple Measure of Gobbledygook (SMOG), Flesch Reading Ease Score (FRES) and Gunning Fog (GFG) readability scores. Quality was assessed using the Global Quality Score (GQS) and the Ensuring Quality Information for Patients (EQIP) score. Reliability was assessed by determining with DISCERN and Journal of American Medical Association (JAMA) scales. Results The first three keywords detected as a result of Google Trend search were “Lower Back Pain”, “ICD 10 Low Back Pain”, and “Low Back Pain Symptoms”. It was determined that the readability of the responses given by all AI chatbots was higher than the recommended 6th grade readability level ( p < 0.001). In the EQIP, JAMA, modified DISCERN and GQS score evaluation, Perplexity was found to have significantly higher scores than other chatbots ( p < 0.001). Conclusion It has been determined that the answers given by AI chatbots to keywords about LBP are difficult to read and have low reliability and quality assessment. It is clear that when new chatbots are introduced, they can provide better guidance to patients with increased clarity and text quality. This study can provide inspiration for future studies on improving the algorithms and responses of AI chatbots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Muncy发布了新的文献求助10
1秒前
Keyto7应助淡然的大雁采纳,获得20
2秒前
不安涵山发布了新的文献求助30
2秒前
Li发布了新的文献求助10
5秒前
ZZZ发布了新的文献求助10
6秒前
hubanj完成签到,获得积分10
9秒前
小二郎应助XiYang采纳,获得10
9秒前
卡卡西发布了新的文献求助20
10秒前
充电宝应助xu采纳,获得10
19秒前
ds完成签到,获得积分10
20秒前
20秒前
LALALA发布了新的文献求助10
20秒前
社科狗发布了新的文献求助10
21秒前
22秒前
华仔应助Ting采纳,获得10
25秒前
XiYang发布了新的文献求助10
25秒前
ZY发布了新的文献求助10
26秒前
ycp完成签到,获得积分10
28秒前
一诺相许完成签到 ,获得积分10
29秒前
应俊完成签到 ,获得积分10
31秒前
Muncy发布了新的文献求助30
32秒前
踏实三问完成签到,获得积分10
32秒前
大个应助安静碧灵采纳,获得10
32秒前
星辰大海应助Ting采纳,获得10
33秒前
woheyumi完成签到 ,获得积分10
33秒前
34秒前
韦小强发布了新的文献求助10
34秒前
35秒前
36秒前
36秒前
36秒前
xuanxuan发布了新的文献求助10
38秒前
Ting发布了新的文献求助10
40秒前
CDC发布了新的文献求助10
40秒前
科研通AI6应助点墨采纳,获得10
40秒前
嘿嘿发布了新的文献求助10
42秒前
LY发布了新的文献求助10
43秒前
43秒前
科研通AI6应助gentlewen采纳,获得10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648587
关于积分的说明 14685691
捐赠科研通 4590541
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491224
关于科研通互助平台的介绍 1462521