Prediction of provincial Digital Economy Development Index based on grey combination forecasting model

索引(排版) 开发(拓扑) 数字经济 计算机科学 人工智能 计量经济学 区域科学 数据挖掘 经济 地理 数学 万维网 数学分析
作者
Pingping Xiong,Jun Yang,Jinyi Wei,Hui Shu
出处
期刊:Grey systems [Emerald Publishing Limited]
被引量:1
标识
DOI:10.1108/gs-04-2024-0051
摘要

Purpose In many instances, the data exhibits periodic and trend characteristics. However, indices like the Digital Economy Development Index (DEDI), which pertains to science, technology, policy and economy, may occasionally display erratic behaviors due to external influences. Thus, to address the unique attributes of the digital economy, this study integrates the principle of information prioritization with nonlinear processing techniques to accurately forecast rapid and anomalous data. Design/methodology/approach The proposed method utilizes the new information priority GM(1,1) model alongside an optimized BP neural network model achieved through the gradient descent technique (GD-BP). Initially, the provincial Digital Economic Development Index (DEDI) is derived using the entropy weight approach. Subsequently, the original GM(1,1) time response equation undergoes alteration of the initial value, and the time parameter is fine-tuned using Particle Swarm Optimization (PSO). Next, the GD-BP model addresses the residual error. Ultimately, the prediction outcome of the grey combination forecasting model (GCFM) is derived by merging the findings from both the NIPGM(1,1) model and the GD-BP approach. Findings Using the DEDI of Jiangsu Province as a case study, researchers demonstrate the effectiveness of the grey combination forecasting model. This model achieves a mean absolute percentage error of 0.33%, outperforming other forecasting methods. Research limitations/implications First of all, due to the limited data access, it is impossible to obtain a more comprehensive dataset related to the DEDI of Jiangsu Province. Secondly, according to the test results of the GCFM from 2011 to 2020 and the forecasting results from 2021 to 2023, it can be seen that the results of the GCFM are consistent with the actual development situation, but it cannot guarantee the correctness of the long-term forecasting, so the combination forecasting model is only suitable for short-term forecasting. Originality/value This article proposes a grey combination prediction model based on the principles of new information priority and nonlinear processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼完成签到 ,获得积分10
刚刚
是你发布了新的文献求助20
3秒前
4秒前
4秒前
2874发布了新的文献求助10
5秒前
ding应助estrella采纳,获得10
5秒前
5秒前
陈补天发布了新的文献求助10
9秒前
小蘑菇应助飘逸的冷菱采纳,获得10
9秒前
个性归尘应助科研通管家采纳,获得30
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
李琼应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
暮渔木鱼发布了新的文献求助10
10秒前
10秒前
10秒前
李健的小迷弟应助YJ888采纳,获得10
10秒前
香蕉觅云应助kiwi采纳,获得10
11秒前
11秒前
13秒前
梅子成发布了新的文献求助10
15秒前
星辰大海应助LDDD采纳,获得10
15秒前
Baymax发布了新的文献求助30
15秒前
15秒前
勤奋的煎饼完成签到,获得积分10
16秒前
YYY完成签到,获得积分10
16秒前
小木林完成签到,获得积分10
17秒前
17秒前
妮妮发布了新的文献求助10
17秒前
拘礼夫人发布了新的文献求助10
17秒前
18秒前
windows完成签到,获得积分10
22秒前
shen发布了新的文献求助10
22秒前
dada发布了新的文献求助10
23秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839851
求助须知:如何正确求助?哪些是违规求助? 3382113
关于积分的说明 10521335
捐赠科研通 3101547
什么是DOI,文献DOI怎么找? 1708111
邀请新用户注册赠送积分活动 822196
科研通“疑难数据库(出版商)”最低求助积分说明 773208