氧化还原
氧化物
锂(药物)
过渡金属
电子转移
金属
阴极
氧气
材料科学
化学
无机化学
化学物理
光化学
物理化学
催化作用
冶金
有机化学
内分泌学
医学
生物化学
作者
Min‐Ho Kim,Haeseong Jang,Eunryeol Lee,Ji‐Seon Seo,Jaehyun Park,Ahreum Choi,Tae-Won Kim,Myeongjun Choi,E J Kim,Young Hwa Jung,Seok Ju Kang,Jaephil Cho,Yuzhang Li,Min Gyu Kim,Dong‐Hwa Seo,Hyun‐Wook Lee
出处
期刊:Science Advances
[American Association for the Advancement of Science]
日期:2025-02-19
卷期号:11 (8)
标识
DOI:10.1126/sciadv.adt0232
摘要
Apart from conventional redox chemistries, exploring high-voltage anionic redox processes, such as pure oxygen or high-valent transition metal ion redox, poses challenges due to the instability of O nonbonding or O-dominant energy states. These states are associated with destructive behaviors in layered oxide cathodes, including local structural distortion, cationic disordering, and oxygen gas evolution. In this study, we suppress first-cycle voltage hysteresis and irreversible O 2 evolution in Li-rich oxide cathodes through covalency competition induced by the substitution of electropositive groups. We found that the nonequivalent electron distribution within an asymmetric M A -O-M B backbone (metal-to-metal charge transfer via oxygen ligands) increases electron density on electronegative transition metal ions, preventing them from reaching unstable oxidation states within an operating voltage range. This phenomenon is observed across diverse transition metal combinations, providing insights into controlling unnecessary oxygen redox activity. Our findings open new avenues for controlling intrinsic redox chemistry and enabling the rational design of high–energy density Li-rich oxide cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI