Vision‐Based UAV Detection and Tracking Using Deep Learning and Kalman Filter

卡尔曼滤波器 人工智能 计算机视觉 计算机科学 跟踪(教育) 模式识别(心理学) 心理学 教育学
作者
Nancy Alshaer,Reham Abdelfatah,Tawfik Ismail,Haitham Mahmoud
出处
期刊:Computational Intelligence [Wiley]
卷期号:41 (1) 被引量:4
标识
DOI:10.1111/coin.70026
摘要

ABSTRACT The rapid increase in unmanned aerial vehicles (UAVs) usage across various sectors has heightened the need for robust detection and tracking systems due to safety and security concerns. Traditional methods like radar and acoustic sensors face limitations in noisy environments, underscoring the necessity for advanced solutions such as deep learning‐based detection and tracking. Hence, this article proposes a two‐stage platform designed to address these challenges by detecting, classifying, and tracking various consumer‐grade UAVs. The tracking efficacy of the proposed system is assessed using a combination of deep learning and Kalman filter techniques. Specifically, we evaluate models such as YOLOv3, YOLOv4, YOLOv5, and YOLOx to identify the most efficient detector for the initial detection stage. Moreover, we employ both the Kalman filter and the Extended Kalman filter for the tracking stage, enhancing the system's robustness and enabling real‐time tracking capabilities. To train our detector, we construct a dataset comprising approximately 10,000 records that capture the diverse environmental and behavioural conditions experienced by UAVs during their flight. We then present both visual and analytical results to assess and compare the performance of our detector and tracker. Our proposed system effectively mitigates cumulative detection errors across consecutive video frames and enhances the accuracy of the target's bounding boxes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小人儿发布了新的文献求助10
1秒前
安详的夜蕾完成签到,获得积分10
1秒前
VAN喵发布了新的文献求助10
1秒前
Allein发布了新的文献求助10
1秒前
1秒前
万能图书馆应助zstzst采纳,获得10
2秒前
Itsdami发布了新的文献求助20
2秒前
2秒前
2秒前
养恩完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
情怀应助heibaixiang采纳,获得10
3秒前
3秒前
acorn发布了新的文献求助10
4秒前
4秒前
迷你的冰巧完成签到,获得积分10
4秒前
张青争完成签到,获得积分10
4秒前
zhouyelly完成签到,获得积分10
4秒前
4秒前
烟花应助hjm采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
十二发布了新的文献求助10
5秒前
李健应助科研通管家采纳,获得10
5秒前
wy.he应助科研通管家采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
wy.he应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
Neymar应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
盛通发布了新的文献求助10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653643
求助须知:如何正确求助?哪些是违规求助? 4790334
关于积分的说明 15065238
捐赠科研通 4812289
什么是DOI,文献DOI怎么找? 2574395
邀请新用户注册赠送积分活动 1529973
关于科研通互助平台的介绍 1488708