亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nutritional influences on Alzheimer’s disease: Insights from transformer models and explainable AI

神经科学 疾病 心理学 医学 生物 内科学
作者
Ziming Liu,Longjian Liu,R. Eric Heidel,Xiaopeng Zhao
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:20 (S7)
标识
DOI:10.1002/alz.089077
摘要

Abstract Background This study utilizes transformer‐based machine learning models and explainable AI (XAI) techniques to investigate the complex relationship between various nutritional factors and AD mortality. Drawing data from the Third National Health and Nutrition Examination Survey (NHANES III 1988 to 1994) and the NHANES III Mortality‐Linked File (2019), it aims to dissect the multifaceted interactions between nutrition and AD. Method The study employs advanced transformer models alongside traditional machine learning methods like random forests and support vector machines. These models are applied to the NHANES III dataset to predict mortality outcomes in AD, HD, and CA, with a particular focus on nutritional factors. XAI techniques, including the Shapley Additive Explanations (SHAP) and integrated gradients, are used to enhance the interpretability of these models. The aim is to identify and understand the most influential nutritional elements contributing to AD mortality and how these compare across different disease contexts. Result Transformer models demonstrated a high degree of accuracy and reliability in identifying AD cases, outperforming traditional models in recall scores. XAI analysis highlighted several key nutritional factors significantly associated with AD mortality, such as serum apolipoprotein AI, vitamin B12, and selenium levels. These findings underscore the potential of transformer models and XAI in extracting deeper insights from complex medical data. Additionally, the study revealed distinct nutritional patterns associated with AD compared to HD and CA, suggesting specific nutritional pathways influencing the progression and mortality of these diseases. Conclusion This research represents a significant step forward in applying advanced AI methodologies to medical research, particularly in the context of AD. By leveraging transformer models and XAI, the study provides a nuanced understanding of the impact of nutrition on AD mortality. It highlights the potential of these techniques in unraveling the complex interplay between diet and disease progression, offering a foundation for future investigations into targeted nutritional interventions for AD management. The findings also suggest broader implications for the use of AI in healthcare, paving the way for more sophisticated and personalized approaches to disease prevention and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小婷君发布了新的文献求助10
3秒前
4秒前
mir为少发布了新的文献求助10
8秒前
mir为少完成签到,获得积分20
14秒前
香蕉觅云应助喵喵采纳,获得10
17秒前
华仔应助mir为少采纳,获得10
19秒前
26秒前
27秒前
儒雅老太发布了新的文献求助10
33秒前
喵喵发布了新的文献求助10
33秒前
尊敬的小凡完成签到,获得积分10
53秒前
熬夜猝死的我完成签到,获得积分10
1分钟前
FashionBoy应助喵喵采纳,获得10
1分钟前
2分钟前
喵喵发布了新的文献求助10
2分钟前
2分钟前
2分钟前
深情安青应助喵喵采纳,获得10
2分钟前
2分钟前
2分钟前
喵喵发布了新的文献求助10
2分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
3分钟前
儒雅老太完成签到,获得积分20
3分钟前
QCB完成签到 ,获得积分10
4分钟前
独特的追命应助儒雅老太采纳,获得10
4分钟前
深情安青应助儒雅老太采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
浮游应助oleskarabach采纳,获得10
5分钟前
浮游应助oleskarabach采纳,获得10
5分钟前
大模型应助喵喵采纳,获得10
5分钟前
李木禾完成签到 ,获得积分10
5分钟前
SciGPT应助YOGA1115采纳,获得10
5分钟前
5分钟前
喵喵发布了新的文献求助10
5分钟前
orixero应助Criminology34采纳,获得500
6分钟前
Hello应助喵喵采纳,获得10
6分钟前
6分钟前
喵喵发布了新的文献求助10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078540
求助须知:如何正确求助?哪些是违规求助? 4297273
关于积分的说明 13388009
捐赠科研通 4120046
什么是DOI,文献DOI怎么找? 2256401
邀请新用户注册赠送积分活动 1260687
关于科研通互助平台的介绍 1194374