Nutritional influences on Alzheimer’s disease: Insights from transformer models and explainable AI

神经科学 疾病 心理学 医学 生物 内科学
作者
Ziming Liu,Longjian Liu,R. Eric Heidel,Xiaopeng Zhao
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:20 (S7)
标识
DOI:10.1002/alz.089077
摘要

Abstract Background This study utilizes transformer‐based machine learning models and explainable AI (XAI) techniques to investigate the complex relationship between various nutritional factors and AD mortality. Drawing data from the Third National Health and Nutrition Examination Survey (NHANES III 1988 to 1994) and the NHANES III Mortality‐Linked File (2019), it aims to dissect the multifaceted interactions between nutrition and AD. Method The study employs advanced transformer models alongside traditional machine learning methods like random forests and support vector machines. These models are applied to the NHANES III dataset to predict mortality outcomes in AD, HD, and CA, with a particular focus on nutritional factors. XAI techniques, including the Shapley Additive Explanations (SHAP) and integrated gradients, are used to enhance the interpretability of these models. The aim is to identify and understand the most influential nutritional elements contributing to AD mortality and how these compare across different disease contexts. Result Transformer models demonstrated a high degree of accuracy and reliability in identifying AD cases, outperforming traditional models in recall scores. XAI analysis highlighted several key nutritional factors significantly associated with AD mortality, such as serum apolipoprotein AI, vitamin B12, and selenium levels. These findings underscore the potential of transformer models and XAI in extracting deeper insights from complex medical data. Additionally, the study revealed distinct nutritional patterns associated with AD compared to HD and CA, suggesting specific nutritional pathways influencing the progression and mortality of these diseases. Conclusion This research represents a significant step forward in applying advanced AI methodologies to medical research, particularly in the context of AD. By leveraging transformer models and XAI, the study provides a nuanced understanding of the impact of nutrition on AD mortality. It highlights the potential of these techniques in unraveling the complex interplay between diet and disease progression, offering a foundation for future investigations into targeted nutritional interventions for AD management. The findings also suggest broader implications for the use of AI in healthcare, paving the way for more sophisticated and personalized approaches to disease prevention and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助loen采纳,获得10
1秒前
kk发布了新的文献求助10
1秒前
1秒前
划水的鱼发布了新的文献求助10
2秒前
luxiaoyu发布了新的文献求助10
2秒前
123完成签到,获得积分20
3秒前
4秒前
4秒前
Wu完成签到,获得积分10
5秒前
Leoling完成签到,获得积分20
5秒前
斯文败类应助Emma采纳,获得10
6秒前
7秒前
ouwen完成签到,获得积分10
7秒前
7秒前
科研助手6应助xuan采纳,获得10
7秒前
平常的毛豆应助loen采纳,获得10
7秒前
8秒前
8秒前
Gary发布了新的文献求助10
8秒前
Leoling发布了新的文献求助10
8秒前
10秒前
10秒前
无语大王完成签到,获得积分10
10秒前
11秒前
777发布了新的文献求助10
11秒前
11秒前
太清完成签到 ,获得积分10
11秒前
12秒前
袁大头发布了新的文献求助10
12秒前
呼呼发布了新的文献求助10
12秒前
YY发布了新的文献求助10
13秒前
Rikuya发布了新的文献求助10
13秒前
13秒前
Lucas应助zz采纳,获得10
13秒前
yinying发布了新的文献求助10
13秒前
Sarah发布了新的文献求助30
14秒前
15秒前
16秒前
www发布了新的文献求助10
16秒前
Rikuya完成签到,获得积分10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800140
求助须知:如何正确求助?哪些是违规求助? 3345459
关于积分的说明 10325049
捐赠科研通 3061931
什么是DOI,文献DOI怎么找? 1680614
邀请新用户注册赠送积分活动 807158
科研通“疑难数据库(出版商)”最低求助积分说明 763509