清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Topology‐Enhanced Multi‐Viewed Contrastive Approach for Molecular Graph Representation Learning and Classification

计算机科学 理论计算机科学 图形 化学信息学 人工智能 拓扑图论 特征学习 机器学习 图嵌入 分子图 拓扑(电路) 电压图 数学 生物信息学 组合数学 折线图 生物
作者
Phu Pham
出处
期刊:Molecular Informatics [Wiley]
卷期号:44 (1) 被引量:2
标识
DOI:10.1002/minf.202400252
摘要

Abstract In recent times, graph representation learning has been becoming a hot research topic which has attracted a lot of attention from researchers. Graph embeddings have diverse applications across fields such as information and social network analysis, bioinformatics and cheminformatics, natural language processing (NLP), and recommendation systems. Among the advanced deep learning (DL) based architectures used in graph representation learning, graph neural networks (GNNs) have emerged as the dominant and highly effective framework. The recent GNN‐based methods have demonstrated state‐of‐the‐art performance on complex supervised and unsupervised tasks at both the node and graph levels. In recent years, to enhance multi‐view and structured graph representations, contrastive learning‐based techniques have been developed, introducing models known as graph contrastive learning (GCL) models. These GCL approaches leverage unsupervised contrastive methods to capture multi‐view graph representations by comparing node and graph embeddings, yielding significant improvements in both graph‐level representations and task‐specific applications, such as molecular embedding and classification. However, as most GCL techniques are primarily designed to focus on the explicit graph structure through GNN‐based encoders, they often overlook critical topological insights that could be provided through topological data analysis (TDA). Given the promising research indicating that topological features can greatly benefit various graph learning tasks, we propose a novel topology‐enhanced, multi‐view graph contrastive learning model called TMGCL. Our TMGCL model is designed to capture and utilize both comprehensive multi‐scale topological and global structural information from graphs. This enhanced representation capability positions TMGCL to directly support a range of applications, such as molecular classification, with improved accuracy and robustness. Extensive experiments within two real‐world datasets proved the effectiveness and outperformance of our proposed TMGCL in comparing with state‐of‐the‐art GNN/GCL‐based baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chcmy完成签到 ,获得积分0
3秒前
在水一方完成签到 ,获得积分10
5秒前
美丽心情发布了新的文献求助10
5秒前
唐泽雪穗应助科研通管家采纳,获得10
17秒前
唐泽雪穗应助科研通管家采纳,获得10
17秒前
唐泽雪穗应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得30
17秒前
夜闲安坐完成签到 ,获得积分10
29秒前
29秒前
LGH完成签到 ,获得积分10
33秒前
现代秦始皇完成签到 ,获得积分10
36秒前
cadcae完成签到,获得积分10
42秒前
量子星尘发布了新的文献求助10
48秒前
Bubble完成签到 ,获得积分10
1分钟前
乔杰完成签到 ,获得积分10
1分钟前
南宫士晋完成签到 ,获得积分10
1分钟前
回首不再是少年完成签到,获得积分0
1分钟前
赫连远望完成签到,获得积分10
1分钟前
小丸子和zz完成签到 ,获得积分10
1分钟前
嘟嘟完成签到 ,获得积分10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
阔达棉花糖完成签到 ,获得积分10
3分钟前
苒苒完成签到,获得积分10
3分钟前
Alvin完成签到 ,获得积分10
3分钟前
HHW完成签到,获得积分10
3分钟前
3分钟前
坦率的从波完成签到 ,获得积分0
3分钟前
蓝鲸发布了新的文献求助10
3分钟前
文献搬运工完成签到 ,获得积分10
3分钟前
开心向真完成签到,获得积分10
3分钟前
dx完成签到,获得积分10
4分钟前
debu9完成签到,获得积分10
4分钟前
一禅完成签到 ,获得积分10
5分钟前
情怀应助许子采纳,获得10
6分钟前
6分钟前
唐泽雪穗应助科研通管家采纳,获得10
6分钟前
唐泽雪穗应助科研通管家采纳,获得10
6分钟前
轻松寄风发布了新的文献求助10
6分钟前
动人的诗霜完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4852084
求助须知:如何正确求助?哪些是违规求助? 4150445
关于积分的说明 12857032
捐赠科研通 3898613
什么是DOI,文献DOI怎么找? 2142558
邀请新用户注册赠送积分活动 1162308
关于科研通互助平台的介绍 1062646