Contact‐Engineered Oxide Memtransistors for Homeostasis‐Based High‐Linearity and Precision Neuromorphic Computing

神经形态工程学 仿真 材料科学 线性 记忆电阻器 稳态可塑性 计算机科学 电子工程 光电子学 纳米技术 人工神经网络 长时程增强 化学 变质塑性 人工智能 工程类 受体 生物化学 经济增长 经济
作者
San Nam,Dong Hyun Kang,Seong‐Pil Jeon,Dayul Nam,Jeong‐Wan Jo,Sang‐Joon Park,Jiyong Lee,Myung‐Gil Kim,Tae‐Jun Ha,Sung Kyu Park,Yong‐Hoon Kim
出处
期刊:Small [Wiley]
卷期号:21 (7): e2409510-e2409510 被引量:6
标识
DOI:10.1002/smll.202409510
摘要

Abstract Homeostasis is essential in biological neural networks, optimizing information processing and experience‐dependent learning by maintaining the balance of neuronal activity. However, conventional two‐terminal memristors have limitations in implementing homeostatic functions due to the absence of global regulation ability. Here, three‐terminal oxide memtransistor‐based homeostatic synapses are demonstrated to perform highly linear synaptic weight update and enhanced accuracy in neuromorphic computing. Particularly, by leveraging the gate control of contact‐engineered indium‐gallium‐zinc‐oxide (IGZO) memtransistor, synaptic weight scaling is enabled for high‐linearity and precision neuromorphic computing. Moreover, sinusoidal control of gate voltage is demonstrated, possibly enabling the emulation of higher‐order synaptic functions. The device structure of IGZO memtransistor is optimized regarding the source/drain electrode materials and an interfacial layer inserted between the IGZO channel and source electrode. As a result, memtransistors exhibiting high current switching ratio of >10 4 and reliable endurance characteristics are obtained. Furthermore, through the adaptation of synaptic scaling, emulating the homeostasis, non‐linearity values of 0.01 and −0.01 are achieved for potentiation and depression, respectively, exhibiting a recognition accuracy of 91.77% for digit images. It is envisioned that the contact‐engineered IGZO memtransistors hold significant promise for implementing the homeostasis in neuromorphic computing for high linearity and high efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nono发布了新的文献求助10
2秒前
烟花应助seall采纳,获得10
3秒前
ChenYX发布了新的文献求助10
5秒前
Bonnienuit发布了新的文献求助10
7秒前
11秒前
舒心凡应助杀出地狱采纳,获得10
11秒前
12秒前
小蘑菇应助Bonnienuit采纳,获得10
12秒前
春竹发布了新的文献求助10
15秒前
英俊的铭应助机灵的无极采纳,获得10
15秒前
QwQ关闭了QwQ文献求助
17秒前
echo发布了新的文献求助10
18秒前
zhengzhao完成签到,获得积分10
22秒前
科研通AI6应助qiu采纳,获得10
27秒前
shhoing应助草木采纳,获得10
28秒前
peterlee完成签到,获得积分10
31秒前
BowieHuang应助拉长的菲音采纳,获得10
31秒前
junfeiwang完成签到,获得积分10
36秒前
38秒前
骑帅骑不快完成签到,获得积分10
44秒前
48秒前
48秒前
香蕉觅云应助科研通管家采纳,获得10
50秒前
子车茗应助科研通管家采纳,获得30
50秒前
慕青应助科研通管家采纳,获得10
50秒前
斯文败类应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
Orange应助科研通管家采纳,获得30
50秒前
Owen应助科研通管家采纳,获得10
50秒前
50秒前
123456应助科研通管家采纳,获得10
50秒前
Jasper应助科研通管家采纳,获得10
50秒前
子车茗应助科研通管家采纳,获得30
50秒前
Chiara应助科研通管家采纳,获得10
50秒前
JamesPei应助科研通管家采纳,获得10
50秒前
传奇3应助科研通管家采纳,获得10
51秒前
小蘑菇应助科研通管家采纳,获得10
51秒前
ding应助科研通管家采纳,获得10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558025
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14670108
捐赠科研通 4584465
什么是DOI,文献DOI怎么找? 2514893
邀请新用户注册赠送积分活动 1489009
关于科研通互助平台的介绍 1459631