清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Generative artificial intelligence enables the generation of bone scintigraphy images and improves generalization of deep learning models in data-constrained environments

人工智能 深度学习 计算机科学 生成模型 一般化 医学影像学 骨闪烁照相术 模式识别(心理学) 机器学习 核医学 医学 生成语法 数学 数学分析
作者
David Haberl,Jing Ning,Kilian Kluge,Katarina Kumpf,Josef Yu,Zewen Jiang,Cláudia S. Constantino,A. Monaci,Maria Starace,Alexander Haug,René Rettl,Luca Camoni,Francesco Bertagna,Katharina Mascherbauer,Felix Hofer,Domenico Albano,Roberto Sciagrà,Francisco P. M. Oliveira,Durval C. Costa,Christian Nitsche
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
被引量:1
标识
DOI:10.1007/s00259-025-07091-8
摘要

Abstract Purpose Advancements of deep learning in medical imaging are often constrained by the limited availability of large, annotated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a generative artificial intelligence (AI) approach to create synthetic medical images taking the example of bone scintigraphy scans, to increase the data diversity of small-scale datasets for more effective model training and improved generalization. Methods We trained a generative model on 99m Tc-bone scintigraphy scans from 9,170 patients in one center to generate high-quality and fully anonymized annotated scans of patients representing two distinct disease patterns: abnormal uptake indicative of (i) bone metastases and (ii) cardiac uptake indicative of cardiac amyloidosis. A blinded reader study was performed to assess the clinical validity and quality of the generated data. We investigated the added value of the generated data by augmenting an independent small single-center dataset with synthetic data and by training a deep learning model to detect abnormal uptake in a downstream classification task. We tested this model on 7,472 scans from 6,448 patients across four external sites in a cross-tracer and cross-scanner setting and associated the resulting model predictions with clinical outcomes. Results The clinical value and high quality of the synthetic imaging data were confirmed by four readers, who were unable to distinguish synthetic scans from real scans (average accuracy: 0.48% [95% CI 0.46–0.51]), disagreeing in 239 (60%) of 400 cases (Fleiss’ kappa: 0.18). Adding synthetic data to the training set improved model performance by a mean (± SD) of 33(± 10)% AUC ( p < 0.0001) for detecting abnormal uptake indicative of bone metastases and by 5(± 4)% AUC ( p < 0.0001) for detecting uptake indicative of cardiac amyloidosis across both internal and external testing cohorts, compared to models without synthetic training data. Patients with predicted abnormal uptake had adverse clinical outcomes (log-rank: p < 0.0001). Conclusions Generative AI enables the targeted generation of bone scintigraphy images representing different clinical conditions. Our findings point to the potential of synthetic data to overcome challenges in data sharing and in developing reliable and prognostic deep learning models in data-limited environments. Graphical abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Balance Man完成签到 ,获得积分10
21秒前
zhuuuuuuu完成签到,获得积分20
26秒前
大力水手完成签到 ,获得积分10
1分钟前
光合作用完成签到,获得积分10
1分钟前
lzxbarry完成签到,获得积分0
2分钟前
widesky777完成签到 ,获得积分0
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
CJW完成签到 ,获得积分10
2分钟前
ldjldj_2004完成签到 ,获得积分10
3分钟前
1117完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
水哥完成签到 ,获得积分10
5分钟前
勤奋的灯完成签到 ,获得积分10
5分钟前
Party完成签到 ,获得积分10
5分钟前
卓矢完成签到 ,获得积分10
7分钟前
方白秋完成签到,获得积分10
7分钟前
Sunny完成签到,获得积分10
7分钟前
7分钟前
noss发布了新的文献求助10
7分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
袁青寒发布了新的文献求助10
8分钟前
袁青寒发布了新的文献求助10
8分钟前
袁青寒发布了新的文献求助10
8分钟前
袁青寒发布了新的文献求助10
8分钟前
袁青寒发布了新的文献求助10
8分钟前
稻子完成签到 ,获得积分10
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
共享精神应助袁青寒采纳,获得10
9分钟前
852应助袁青寒采纳,获得10
9分钟前
凯文完成签到 ,获得积分10
9分钟前
9分钟前
woxinyouyou完成签到,获得积分0
11分钟前
lingling完成签到 ,获得积分10
11分钟前
HiNDT发布了新的文献求助10
11分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776014
求助须知:如何正确求助?哪些是违规求助? 3321534
关于积分的说明 10206222
捐赠科研通 3036609
什么是DOI,文献DOI怎么找? 1666373
邀请新用户注册赠送积分活动 797395
科研通“疑难数据库(出版商)”最低求助积分说明 757805