亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-Driven Energy Forecasting Enhancing Smart Grid Efficiency with LSTM Networks

计算机科学 自回归积分移动平均 能源消耗 时间序列 智能电网 均方误差 可再生能源 平均绝对百分比误差 能量(信号处理) 极限学习机 人工智能 数据挖掘 人工神经网络 机器学习 统计 工程类 数学 电气工程
作者
Vincent Omollo Nyangaresi
标识
DOI:10.70470/edraak/2024/005
摘要

Energy consumption forecasting is an important key to smart grid, energy stability, and sustainable energy development. With the adaptation of the new energy system with a high level of renewable energy the forecast of energy demand becomes more complicated because of variability and nonlinearity in time series. The forecasting complexities in each of these environments are discussed and this study is focused on the use of Artificial Intelligence (AI) particularly the Long Short-Term Memory (LSTM) networks. LSTM are especially appropriate for time series forecasting because the function can recognize long-time dependencies for complex non-linear relations between given data sets. Compared with such statistical models as ARIMA, LSTMs perform much better in terms of irregularity inherent to the fluctuations in energy consumption trends. The work also combines the energy data collected from the real-world energy systems and environmental factors such as weather conditions, time difference, and the effects of holidays on energy consumption. To compare the LSTM model to some baseline methods, a large number of experiments were performed. Forecasting accuracy was evaluated using Metrics including; MAE (Mean Absolute Error), MSE (Mean Squared Error), and R-squared. The results show that there is a massive enhancement in the prediction of reliability and present the fact that LSTM model can learn different and varying data streams. Furthermore, the study examines the impact of accurate energy forecasting in the deployment of renewable energy into smart grid, energy management and low operational expenses. This study therefore emphasizes on the impact of such AI-based models as LSTM in enhancing a smart grid technology for efficient energy control. The study presents promising results that will foster and inform further research on the use of AI technologies for tackling new emergent complexities in sustainable energy systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
4秒前
雨雨发布了新的文献求助30
9秒前
Enso完成签到,获得积分10
13秒前
25秒前
Enso发布了新的文献求助10
29秒前
雨雨完成签到,获得积分10
35秒前
vbnn完成签到 ,获得积分10
1分钟前
juliar完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
宋艳芳完成签到,获得积分10
3分钟前
笨笨山芙完成签到 ,获得积分10
3分钟前
鹏笑完成签到,获得积分10
3分钟前
4分钟前
imcwj完成签到 ,获得积分10
5分钟前
默默的棉花糖完成签到,获得积分10
5分钟前
yukky完成签到,获得积分10
5分钟前
今后应助yaoli0823采纳,获得10
6分钟前
VAE完成签到,获得积分10
6分钟前
钢钢完成签到,获得积分10
6分钟前
6分钟前
mellow完成签到,获得积分10
7分钟前
Ljm发布了新的文献求助20
7分钟前
量子星尘发布了新的文献求助10
7分钟前
iman完成签到,获得积分10
8分钟前
8分钟前
yaoli0823发布了新的文献求助10
8分钟前
烟花应助Ljm采纳,获得20
8分钟前
科研通AI6应助科研通管家采纳,获得10
10分钟前
10分钟前
yaoli0823完成签到,获得积分10
10分钟前
方沅完成签到,获得积分10
12分钟前
科研通AI2S应助怕黑斑马采纳,获得30
12分钟前
充电宝应助风辞采纳,获得10
12分钟前
12分钟前
13分钟前
风辞发布了新的文献求助10
13分钟前
风辞完成签到,获得积分10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900929
求助须知:如何正确求助?哪些是违规求助? 4180573
关于积分的说明 12977069
捐赠科研通 3945389
什么是DOI,文献DOI怎么找? 2164089
邀请新用户注册赠送积分活动 1182384
关于科研通互助平台的介绍 1088697