Enhancing Surgical Precision in Autonomous Robotic Incisions via Physics-Based Tissue Cutting Simulation

计算机科学 医疗机器人 机器人 计算机视觉 人工智能 模拟
作者
Jiawei Ge,Ethan Kilmer,Leila J. Mady,Justin D. Opfermann,Axel Krieger
标识
DOI:10.1109/iros58592.2024.10802347
摘要

In soft tissue surgeries, such as tumor resections, achieving precision is of utmost importance. Surgeons conventionally achieve this precision through intraoperative adjustments to the cutting plan, responding to deformations from tool-tissue interactions. This study examines the integration of physics-based tissue cutting simulations into autonomous robotic surgery to preoperatively predict and compensate for such deformations, aiming to improve surgical precision and reduce the necessity for dynamic adjustments during autonomous surgeries. This study adapts a real-to-sim-to-real workflow. Initially, the Autonomous System for Tumor Resection (ASTR) was employed to evaluate its accuracy in performing preoperatively intended incisions along the irregular contours of porcine tongue pseudotumors. Following this, a finite element analysis-based simulation, utilizing the Simulation Open Framework Architecture (SOFA), was developed and tuned to accurately mimic these tissue and incision interactions. Insights gained from this simulation were applied to refine the robot's path planning, ensuring a closer alignment of actual incisions with the initially intended surgical plan. The efficacy of this approach was validated by comparing surface incision precision on ex vivo porcine tongues, with the average absolute error reducing from 1.73mm to 1.46mm after applying simulation-driven path adjustments (p < 0.001). Additionally, our method not only demonstrated improvements in maintaining the intended cutting shapes and locations, with shape matching scores using Hu moments enhancing from 0.10 to 0.06 and centroid shifts decreasing from 2.09mm to 1.33mm, but it also potentially reduced the likelihood of adverse oncologic outcomes by preventing clinically suggested excessively close margins of 2.2mm. This feasibility study suggests that merging physics-based cutting simulations with autonomous robotic surgery could potentially lead to more accurate incisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZS发布了新的文献求助10
刚刚
听风雨完成签到,获得积分10
刚刚
小胡完成签到,获得积分10
1秒前
revew666完成签到,获得积分10
1秒前
Yang完成签到,获得积分10
1秒前
研友_LX7zK8完成签到,获得积分10
2秒前
魏佳奇完成签到 ,获得积分10
3秒前
4秒前
pomelo完成签到 ,获得积分10
5秒前
果力成发布了新的文献求助10
5秒前
砡君应助袁海燕采纳,获得10
5秒前
JiayanLee完成签到 ,获得积分10
6秒前
畅快的煜祺完成签到,获得积分10
6秒前
6秒前
科研通AI6应助itsss采纳,获得30
7秒前
小蘑菇应助勤奋核采纳,获得10
7秒前
qyzhu完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
醉翁完成签到,获得积分10
9秒前
我本人lrx发布了新的文献求助30
10秒前
guo发布了新的文献求助10
11秒前
侠医2012完成签到,获得积分0
11秒前
柠檬不吃酸完成签到 ,获得积分10
11秒前
零a完成签到,获得积分10
12秒前
Sepvvvvirtue完成签到 ,获得积分10
12秒前
山东人在南京完成签到 ,获得积分10
13秒前
不秃燃的小老弟完成签到 ,获得积分10
13秒前
优美的明辉完成签到 ,获得积分10
14秒前
TRISTE发布了新的文献求助10
16秒前
越遇完成签到 ,获得积分10
16秒前
16秒前
guo完成签到,获得积分10
17秒前
戴维少尉完成签到,获得积分10
19秒前
19秒前
西米露发布了新的文献求助30
19秒前
坚强的晓兰完成签到 ,获得积分10
20秒前
袁海燕完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482726
求助须知:如何正确求助?哪些是违规求助? 4583446
关于积分的说明 14389653
捐赠科研通 4512735
什么是DOI,文献DOI怎么找? 2473199
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861