清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel diagnostic framework for breast cancer: Combining deep learning with mammogram-DBT feature fusion

人工智能 特征(语言学) 乳腺癌 深度学习 计算机科学 癌症 模式识别(心理学) 机器学习 医学 内科学 语言学 哲学
作者
Nishu Gupta,Jan Kubicek,Marek Penhaker,Mohammad Derawi
出处
期刊:Results in engineering [Elsevier]
卷期号:25: 103836-103836 被引量:7
标识
DOI:10.1016/j.rineng.2024.103836
摘要

Background and motivation: Breast cancer detection remains a critical challenge in medical imaging due to the complexity of tumor features and variability in breast tissue. Conventional mammography struggles with dense tissues, leading to missed diagnoses. Digital Breast Tomosynthesis (DBT) offers improved 3D imaging but brings significant computational burdens. This study proposes a novel framework using the Fully Elman Neural Network (FENN) with feature fusion to enhance the accuracy and reliability of breast cancer diagnosis. Materials and methods: Mammogram images from the CBIS-DDSM dataset and DBT images from the Breast-Cancer-Screening-DBT dataset were used. The preprocessing step involved Extended-Tuned Adaptive Frost Filtering (Ext-AFF) to enhance image quality by reducing noise. Feature extraction was performed using Disentangled Variational Autoencoder (D-VAE), capturing critical texture features. These features were fused using Deep Generalized Canonical Correlation Analysis (Dg-CCA) to maximize feature correlation across modalities. Finally, a Fully Elman Neural Network was employed for classification, distinguishing between benign, malignant, biopsy-proven cancer, and normal tissues. Results: The proposed FENN-based framework achieved superior classification performance compared to existing methods. Key metrics such as accuracy, sensitivity, specificity, and Matthew's correlation coefficient (MCC) demonstrated significant improvements. The fusion of mammogram and DBT images led to enhanced discriminative power, reducing false positives and negatives across various breast cancer classes. Discussion and conclusion: The integration of mammogram and DBT image data with advanced machine learning techniques, such as d-VAE and FENN, enhances diagnostic precision. The proposed framework shows promise for improving clinical decision-making in breast cancer screening by overcoming the limitations of traditional imaging methods. The system's ability to handle complex interdependencies in imaging data offers substantial potential for earlier and more accurate diagnosis. Future directions: Future research will focus on real-time clinical deployment of the framework, incorporating real-time image acquisition and analysis for faster diagnoses. Additionally, scaling the system for large datasets with varying image quality will further validate its robustness and applicability in diverse clinical environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
Funnymudpee发布了新的文献求助10
18秒前
23秒前
MTF完成签到 ,获得积分10
50秒前
59秒前
1分钟前
Eileen完成签到 ,获得积分0
1分钟前
合不着完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
天玄发布了新的文献求助10
4分钟前
4分钟前
4分钟前
天玄发布了新的文献求助10
4分钟前
4分钟前
糟糕的翅膀完成签到,获得积分10
5分钟前
cy0824完成签到 ,获得积分10
5分钟前
5分钟前
披着羊皮的狼完成签到 ,获得积分10
5分钟前
5分钟前
天玄发布了新的文献求助10
5分钟前
5分钟前
无悔完成签到 ,获得积分10
5分钟前
迷茫的一代完成签到,获得积分10
5分钟前
5分钟前
天玄发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
wzbc完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624