已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep‐Learning‐Based Disease Classification in Patients Undergoing Cine Cardiac MRI

医学 肥厚性心肌病 稳态自由进动成像 自编码 法布里病 曼惠特尼U检验 人工智能 内科学 磁共振成像 人口 心脏病学 疾病 放射科 深度学习 计算机科学 环境卫生
作者
Athira Jacob,Teodora Chițiboi,U. Joseph Schoepf,Puneet Sharma,Jonathan Aldinger,Charles Baker,Carla Lautenschlager,Tilman Emrich,Ákos Varga‐Szemes
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:3
标识
DOI:10.1002/jmri.29619
摘要

Background Automated approaches may allow for fast, reproducible clinical assessment of cardiovascular diseases from MRI. Purpose To develop an MRI‐based deep learning (DL) disease classification algorithm to distinguish among normal subjects (NORM), patients with dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and ischemic heart disease (IHD). Study Type Retrospective. Population A total of 1337 subjects (55% female), comprising normal subjects ( N = 568), and patients with DCM ( N = 151), HCM ( N = 177), and IHD ( N = 441). Field Strength/Sequence Balanced steady‐state free precession cine sequence at 1.5/3.0 T. Assessment Bi‐ventricular morphological and functional features and global and segmental left ventricular strain features were automatically extracted from short‐ and long‐axis cine images. Variational autoencoder models were trained on the extracted features and compared against consensus disease label provided by two expert readers (13 and 14 years of experience). Adding unlabeled, normal data to the training was explored to increase specificity of NORM class. Statistical Tests Tenfold cross‐validation for model development; mean, standard deviation (SD) for measurements; classification metrics: area under the curve (AUC), confusion matrix, accuracy, specificity, precision, recall; 95% confidence intervals; Mann–Whitney U test for significance. Results AUCs of 0.952 for NORM, 0.881 for DCM, 0.908 for HCM, and 0.856 for IHD and overall accuracy of 0.778 were obtained, with specificity of 0.908 for the NORM class using both SAX and LAX features. Longitudinal strain features slightly improved classification metrics by 0.001 to 0.03 points, except for HCM‐AUC. Differences in accuracy, metrics for NORM class and HCM‐AUC were statistically significant. Cotraining using unlabeled data increased the specificity for the NORM class to 0.961. Data Conclusion Cardiac function features automatically extracted from cine MRI have potential to be used for disease classification, especially for normal‐abnormal classification. Feature analyses showed that strain features were important for disease labeling. Cotraining using unlabeled data may help to increase specificity for normal‐abnormal classification. Level of Evidence 3 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guojin发布了新的文献求助10
2秒前
3秒前
4秒前
坦率的冰淇淋完成签到 ,获得积分10
4秒前
yummy发布了新的文献求助40
4秒前
4秒前
4秒前
陈寯发布了新的文献求助10
4秒前
6秒前
zjy发布了新的文献求助10
7秒前
Lyn完成签到 ,获得积分10
7秒前
7秒前
坦率的冰淇淋关注了科研通微信公众号
8秒前
lxl98发布了新的文献求助10
8秒前
gb发布了新的文献求助10
8秒前
缥缈鸭子完成签到 ,获得积分10
8秒前
9秒前
库里强发布了新的文献求助10
10秒前
11秒前
fah完成签到,获得积分10
12秒前
小二郎应助guojin采纳,获得10
12秒前
13秒前
张PC发布了新的文献求助30
14秒前
陈寯完成签到,获得积分10
15秒前
放青松发布了新的文献求助10
16秒前
18秒前
Orange应助Yuanyuan采纳,获得10
21秒前
积极鱼完成签到 ,获得积分10
22秒前
cdercder应助库里强采纳,获得10
23秒前
23秒前
在水一方应助yongyou采纳,获得10
23秒前
科研通AI5应助gb采纳,获得10
24秒前
26秒前
大力出奇迹完成签到,获得积分10
28秒前
丘比特应助peace采纳,获得10
31秒前
小小发布了新的文献求助10
32秒前
neilphilosci完成签到 ,获得积分10
32秒前
无花果应助好奇宝宝采纳,获得10
34秒前
34秒前
脑洞疼应助123采纳,获得10
36秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840547
求助须知:如何正确求助?哪些是违规求助? 3382618
关于积分的说明 10525193
捐赠科研通 3102191
什么是DOI,文献DOI怎么找? 1708723
邀请新用户注册赠送积分活动 822646
科研通“疑难数据库(出版商)”最低求助积分说明 773450