Unraveling pathogenesis, biomarkers and potential therapeutic agents for endometriosis associated with disulfidptosis based on bioinformatics analysis, machine learning and experiment validation

子宫内膜异位症 免疫系统 基因 发病机制 生物信息学 计算生物学 生物 生物信息学 医学 免疫学 遗传学 病理
作者
Xiaoxuan Zhao,Yang Zhao,Yuanyuan Zhang,Qingnan Fan,Huanxiao Ke,Xiaowei Chen,Linxi Jin,Hongying Tang,Yuepeng Jiang,Jing Ma
出处
期刊:Journal of Biological Engineering [Springer Nature]
卷期号:18 (1): 42-42 被引量:5
标识
DOI:10.1186/s13036-024-00437-0
摘要

Abstract Background Endometriosis (EMs) is an enigmatic disease of yet-unknown pathogenesis. Disulfidptosis, a novel identified form of programmed cell death resulting from disulfide stress, stands a chance of treating diverse ailments. However, the potential roles of disulfidptosis-related genes (DRGs) in EMs remain elusive. This study aims to thoroughly explore the key disulfidptosis genes involved in EMs, and probe novel diagnostic markers and candidate therapeutic compounds from the aspect of disulfidptosis based on bioinformatics analysis, machine learning, and animal experiments. Results Enrichment analysis on key module genes and differentially expressed genes (DEGs) of eutopic and ectopic endometrial tissues in EMs suggested that EMs was closely related to disulfidptosis. And then, we obtained 20 and 16 disulfidptosis-related DEGs in eutopic and ectopic endometrial tissue, respectively. The protein-protein interaction (PPI) network revealed complex interactions between genes, and screened nine and ten hub genes in eutopic and ectopic endometrial tissue, respectively. Furthermore, immune infiltration analysis uncovered distinct differences in the immunocyte, human leukocyte antigen (HLA) gene set, and immune checkpoints in the eutopic and ectopic endometrial tissues when compared with health control. Besides, the hub genes mentioned above showed a close correlation with the immune microenvironment of EMs. Furthermore, four machine learning algorithms were applied to screen signature genes in eutopic and ectopic endometrial tissue, including the binary logistic regression (BLR), the least absolute shrinkage and selection operator (LASSO), the support vector machine-recursive feature elimination (SVM-RFE), and the extreme gradient boosting (XGBoost). Model training and hyperparameter tuning were implemented on 80% of the data using a ten-fold cross-validation method, and tested in the testing sets which determined the excellent diagnostic performance of these models by six indicators (Sensitivity, Specificity, Positive Predictive Value, Negative Predictive Value, Accuracy, and Area Under Curve). And seven eutopic signature genes (ACTB, GYS1, IQGAP1, MYH10, NUBPL, SLC7A11, TLN1) and five ectopic signature genes (CAPZB, CD2AP, MYH10, OXSM, PDLIM1) were finally identified based on machine learning. The independent validation dataset also showed high accuracy of the signature genes (IQGAP1, SLC7A11, CD2AP, MYH10, PDLIM1) in predicting EMs. Moreover, we screened 12 specific compounds for EMs based on ectopic signature genes and the pharmacological impact of tretinoin on signature genes was further verified in the ectopic lesion in the EMs murine model. Conclusion This study verified a close association between disulfidptosis and EMs based on bioinformatics analysis, machine learning, and animal experiments. Further investigation on the biological mechanism of disulfidptosis in EMs is anticipated to yield novel advancements for searching for potential diagnostic biomarkers and revolutionary therapeutic approaches in EMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
户户得振完成签到,获得积分10
1秒前
酷炫甜瓜发布了新的文献求助10
2秒前
3秒前
乐乐应助AAA采纳,获得10
3秒前
赵成龙发布了新的文献求助10
3秒前
穆一手完成签到 ,获得积分10
4秒前
可靠的纸鹤完成签到,获得积分10
4秒前
DongQiu1993完成签到 ,获得积分10
6秒前
Zhou完成签到,获得积分10
6秒前
JIAO完成签到,获得积分10
6秒前
机灵铭完成签到 ,获得积分10
7秒前
_升_完成签到,获得积分10
7秒前
8秒前
2019122072发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
完美的钢笔完成签到,获得积分10
9秒前
赵成龙完成签到,获得积分10
11秒前
lznd发布了新的文献求助10
12秒前
华仔应助热心的定帮采纳,获得10
12秒前
13秒前
科研执修完成签到,获得积分10
13秒前
双桅船完成签到,获得积分10
14秒前
15秒前
Wang完成签到,获得积分20
15秒前
风清扬发布了新的文献求助10
15秒前
dingbeicn完成签到,获得积分10
16秒前
缓慢咖啡完成签到,获得积分10
16秒前
鹿白柏完成签到 ,获得积分10
16秒前
17秒前
17秒前
lin发布了新的文献求助10
18秒前
浮游应助科研执修采纳,获得10
19秒前
Sigar完成签到 ,获得积分10
19秒前
神仙彩虹鱼完成签到,获得积分10
20秒前
mou发布了新的文献求助10
20秒前
23秒前
lin完成签到,获得积分10
25秒前
25秒前
Yuanfang123完成签到,获得积分10
26秒前
云不归发布了新的文献求助10
27秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586523
求助须知:如何正确求助?哪些是违规求助? 4669816
关于积分的说明 14779967
捐赠科研通 4620445
什么是DOI,文献DOI怎么找? 2530930
邀请新用户注册赠送积分活动 1499716
关于科研通互助平台的介绍 1467878