Deep learning for computer vision based activity recognition and fall detection of the elderly: a systematic review

计算机科学 人工智能 深度学习 计算机视觉 机器学习 模式识别(心理学) 人机交互
作者
F. Xavier Gaya-Morey,Cristina Manresa-Yee,José María Buades Rubio
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:54 (19): 8982-9007 被引量:7
标识
DOI:10.1007/s10489-024-05645-1
摘要

Abstract As the proportion of elderly individuals in developed countries continues to rise globally, addressing their healthcare needs, particularly in preserving their autonomy, is of paramount concern. A growing body of research focuses on Ambient Assisted Living (AAL) systems, aimed at alleviating concerns related to the independent living of the elderly. This systematic review examines the literature pertaining to fall detection and Human Activity Recognition (HAR) for the elderly, two critical tasks for ensuring their safety when living alone. Specifically, this review emphasizes the utilization of Deep Learning (DL) approaches on computer vision data, reflecting current trends in the field. A comprehensive search yielded 2,616 works from five distinct sources, spanning the years 2019 to 2023 (inclusive). From this pool, 151 relevant works were selected for detailed analysis. The review scrutinizes the employed DL models, datasets, and hardware configurations, with particular emphasis on aspects such as privacy preservation and real-world deployment. The main contribution of this study lies in the synthesis of recent advancements in DL-based fall detection and HAR for the elderly, providing insights into the state-of-the-art techniques and identifying areas for further improvement. Given the increasing importance of AAL systems in enhancing the quality of life for the elderly, this review serves as a valuable resource for researchers, practitioners, and policymakers involved in developing and implementing such technologies. Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哆小咪完成签到 ,获得积分10
1秒前
111完成签到 ,获得积分10
3秒前
Churchill87426完成签到,获得积分10
4秒前
4秒前
小摩尔完成签到 ,获得积分10
7秒前
8秒前
sure完成签到 ,获得积分10
11秒前
Zzzzzzzzzzz发布了新的文献求助10
12秒前
12秒前
15秒前
SYLH应助虚心念桃采纳,获得10
15秒前
宁静致远完成签到,获得积分0
16秒前
huan完成签到,获得积分10
16秒前
sure完成签到 ,获得积分10
17秒前
南寅完成签到,获得积分10
21秒前
booshu完成签到,获得积分10
21秒前
小李在哪儿完成签到 ,获得积分10
22秒前
Akim应助雷家采纳,获得10
22秒前
量子星尘发布了新的文献求助10
25秒前
宋呵呵应助虚心念桃采纳,获得10
25秒前
26秒前
沉淀完成签到 ,获得积分10
26秒前
wf完成签到,获得积分10
30秒前
米月莹完成签到 ,获得积分10
30秒前
阔达磬完成签到,获得积分10
31秒前
31秒前
33秒前
lofads完成签到,获得积分10
36秒前
36秒前
进击的然发布了新的文献求助10
36秒前
小明同学发布了新的文献求助10
37秒前
38秒前
风中的凝安完成签到,获得积分10
38秒前
肖肖完成签到,获得积分10
43秒前
量子星尘发布了新的文献求助10
44秒前
科研通AI5应助坦率铅笔采纳,获得10
44秒前
Reese完成签到 ,获得积分10
45秒前
星辰大海应助skct采纳,获得10
48秒前
吃鸡蛋不吃鸡蛋黄完成签到,获得积分10
49秒前
dyuguo3完成签到 ,获得积分10
51秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Building Quantum Computers 1078
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862686
求助须知:如何正确求助?哪些是违规求助? 3405200
关于积分的说明 10643794
捐赠科研通 3128689
什么是DOI,文献DOI怎么找? 1725372
邀请新用户注册赠送积分活动 831042
科研通“疑难数据库(出版商)”最低求助积分说明 779516